Skip to main content

Advertisement

Log in

Immobilization of Urokinase onto Magnetically Directed Micromotors

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this presented work, a new micromotor was prepared for urokinase immobilization. A covalent bond was constructed between the urokinase and the carboxyl groups of the graphene oxide, which is located at the outer layer of micromotors by EDC/NHS chemistry. The inner nickel layer gave magnetic properties to the micromotors and enables them to be separated from the reaction medium with the help of a simple magnet. For promising in vivo applications in the future, these micromotors do not require any fuel for their movement. The structures of the synthesized micromotors were illuminated by SEM and EDX analysis, and the movements of the micromotors were observed under an optical microscope with camera equipment. The immobilization yield of urokinase was found to be 68.07% (0.073 mg/100 µL micromotor solution) using the Bradford protein assay. In addition, to compare the activities of the immobilized and free enzymes, Lineweaver-Burk plots were constructed, and the kinetic parameters were calculated. Km values for free urokinase and immobilized urokinase were 2.0964 mM and 0.5602 mM, respectively. The maximum velocities of free and immobilized urokinase were found to be 25.25 µmol/min and 30.12 µmol/min, respectively. Also, storage stability profiles of the immobilized and free urokinase were monitored for 40-day incubation at + 4 °C, and the immobilized enzyme has 88% of its initial activity, while the free urokinase demonstrated only 30% of its initial activity. As a result, the experiments were carried out in human commercial serum, and specific activity values for free urokinase and immobilized urokinase were found to be 38.06 and 169.84 µmolmg-1 min-1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Cardiovascular diseases (CVDs) (2021). Available from: http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 11 Oct 2021

  2. Raskob, G. E., Angchaisuksiri, P., Blanco, A. N., Buller, H., Gallus, A., Hunt, B. J. … Ozaki, Y. (2014). Thrombosis: a major contributor to global disease burden. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(11), 2363–2371

    Article  CAS  Google Scholar 

  3. Jin, H. J., Zhang, H., Sun, M. L., Zhang, B. G., & Zhang, J. W. (2013). Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. The Journal of Physical Chemistry. B, 120, 3303–3310

    Google Scholar 

  4. Evli, S., & Uygun, D. A. (2019). Enzymatic activity of urokinase immobilized onto Cu 2+-chelated Cibacron blue F3GA–derived poly (HEMA) magnetic nanoparticles. Applied Biochemistry and Biotechnology, 188(1), 194–207

    Article  CAS  Google Scholar 

  5. Collen, D. (1990). Coronary thrombolysis: streptokinase or recombinant tissue-type plasminogen activator? Annals of Internal Medicine, 112(7), 529–538

    Article  CAS  Google Scholar 

  6. Kunamneni, A., Ravuri, B. D., Saisha, V., Ellaiah, P., & Prabhakhar, T. (2008). Urokinase-a very popular cardiovascular agent. Recent Patents on Cardiovascular Drug Discovery, 3(1), 45–58

    Article  CAS  Google Scholar 

  7. Varna, M., Juenet, M., Bayles, R., Mazighi, M., Chauvierre, C., & Letourneur, D. (2015). Nanomedicine as a strategy to fight thrombolytic diseases. Future Science OA, 1(4), 1–14

  8. Prilepskii, A. Y., Fakhardo, A. F., Drozdov, A. S., Vinogradov, V. V., Dudanov, I. P., Shtil, A. A. … Vinogradov, V. V. (2018). Urokinase-conjugated magnetite nanoparticles as a promising drug delivery system for targeted thrombolysis: synthesis and preclinical evaluation. ACS Applied Materials & Interfaces, 10(43), 36764–36775

    Article  CAS  Google Scholar 

  9. Jin, H. J., Zhang, H., Sun, M. L., Zhang, B. G., & Zhang, J. W. (2013). Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. Journal of Thrombosis and Thrombolysis, 36(4), 458–468

    Article  CAS  Google Scholar 

  10. Suh, C. W., Choi, G. S., & Lee, E. K. (2003). Enzymic cleavage of fusion protein using immobilized urokinase covalently conjugated to glyoxyl-agarose. Biotechnology and Applied Biochemistry, 37(2), 149–155

    Article  CAS  Google Scholar 

  11. Yabushita, Y. (1988). Studies on the properties of immobilized urokinase: effects of pH and temperature. Biotechnology and Applied Biochemistry, 10(3), 294–300

    CAS  PubMed  Google Scholar 

  12. Lin-Shu, L., Ito, Y., & Imanishi, Y. (1991). Biological activity of urokinase immobilized to cross-linked poly (2-hydroxyethyl methacrylate). Biomaterials, 12(6), 545–549

    Article  Google Scholar 

  13. Xu, T., Gao, W., Xu, L. P., Zhang, X., & Wang, S. (2017). Fuel-free synthetic micro‐/nanomachines. Advanced Materials, 29(9), 1603250

    Article  Google Scholar 

  14. Solovev, A. A., Xi, W., Gracias, D. H., Harazim, S. M., Deneke, C., Sanchez, S., & Schmidt, O. G. (2012). Self-propelled nanotools. ACS Nano, 6(2), 1751–1756

    Article  CAS  Google Scholar 

  15. Patra, D., Sengupta, S., Duan, W., Zhang, H., Pavlick, R., & Sen, A. (2013). Intelligent, self-powered, drug delivery systems. Nanoscale, 5(4), 1273–1283

    Article  CAS  Google Scholar 

  16. Sanchez, S., Solovev, A. A., Schulze, S., & Schmidt, O. G. (2011). Controlled manipulation of multiple cells using catalytic microbots. Chemical Communications, 47(2), 698–700

    Article  CAS  Google Scholar 

  17. Olson, E. S., Orozco, J., Wu, Z., Malone, C. D., Yi, B., Gao, W. … Mattrey, R. F. (2013). Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging. Biomaterials, 34(35), 8918–8924

    Article  CAS  Google Scholar 

  18. Zhao, G., Sanchez, S., Schmidt, O. G., & Pumera, M. (2013). Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale, 5(7), 2909–2914

    Article  CAS  Google Scholar 

  19. Kline, T. R., Paxton, W. F., Mallouk, T. E., & Sen, A. (2005). Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angewandte Chemie International Edition, 44(5), 744–746

    Article  CAS  Google Scholar 

  20. Burdick, J., Laocharoensuk, R., Wheat, P. M., Posner, J. D., & Wang, J. (2008). Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo. Journal of the American Chemical Society, 130(26), 8164–8165

    Article  CAS  Google Scholar 

  21. Orozco, J., Pan, G., Sattayasamitsathit, S., Galarnyk, M., & Wang, J. (2015). Micromotors to capture and destroy anthrax simulant spores. Analyst, 140(5), 1421–1427

    Article  CAS  Google Scholar 

  22. Guix, M., Mayorga-Martinez, C. C., & Merkoçi, A. (2014). Nano/micromotors in (bio) chemical science applications. Chemical Reviews, 114(12), 6285–6322

    Article  CAS  Google Scholar 

  23. Hummers, W. S., Jr., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339

    Article  CAS  Google Scholar 

  24. Tait, J. F., Engelhardt, S., Smith, C., & Fujikawa, K. (1995). Prourokinase-annexin V chimeras Construction, expression, and characterization of recombinant proteins. The Journal of Biological Chemistry, 270(37), 21594–21599

    Article  CAS  Google Scholar 

  25. Aneesh, P. K., Nambiar, S. R., Rao, T. P., & Ajayaghosh, A. (2014). Electrochemically synthesized partially reduced graphene oxide modified glassy carbon electrode for individual and simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Analytical Methods, 6(14), 5322–5330

    Article  CAS  Google Scholar 

  26. Martín, A., Jurado-Sánchez, B., Escarpa, A., & Wang, J. (2015). Template Electrosynthesis of High‐Performance Graphene Microengines. Small, 11(29), 3568–3574

    Article  Google Scholar 

  27. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernandez-Lafuente, R. (2012). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307

    Article  Google Scholar 

  28. Ghanbari, F., Rowland-Yeo, K., Bloomer, J. C., Clarke, S. E., Lennard, M. S., Tucker, G. T., & Rostami-Hodjegan, A. (2006). A critical evaluation of the experimental design of studies of mechanism based enzyme inhibition, with implications for in vitro-in vivo extrapolation. Current Drug Metabolism, 7(3), 315–334

    Article  CAS  Google Scholar 

  29. Ciulli, A., & Abell, C. (2007). Fragment-based approaches to enzyme inhibition. Current Opinion in Biotechnology, 18(6), 489–496

    Article  CAS  Google Scholar 

  30. Fernandez-Lafuente, R., Rosell, C. M., & Guisan, J. M. (1995). The use of stabilised penicillin acylase derivatives improves the design of kinetically controlled synthesis. Journal of Molecular Catalysis A: Chemical, 101(1), 91–97

    Article  CAS  Google Scholar 

  31. Polizzi, K. M., Bommarius, A. S., Broering, J. M., & Chaparro-Riggers, J. F. (2007). Stability of biocatalysts. Current Opinion in Chemical Biology, 11(2), 220–225

    Article  CAS  Google Scholar 

  32. Gianfreda, L., & Scarfi, M. R. (1991). Enzyme stabilization: state of the art. Molecular and Cellular Biochemistry, 100(2), 97–128

    Article  CAS  Google Scholar 

  33. Garcia-Galan, C., Berenguer‐Murcia, Á., Fernandez‐Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16), 2885–2904

    Article  CAS  Google Scholar 

  34. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463

    Article  CAS  Google Scholar 

  35. Watanabe, S., Shimizu, Y., Teramatsu, T., Murachi, T., & Hino, T. (1981). The in vitro and in vivo behavior of urokinase immobilized onto collagen-synthetic polymer composite material. Journal of Biomedical Materials Research, 15(4), 553–563

    Article  CAS  Google Scholar 

  36. Senatore, F. F., & Bernath, F. R. (1986). Urokinase bound to fibrocollagenous tubes: an in vitro kinetic study. Biotechnology and Bioengineering, 28(1), 58–63

    Article  CAS  Google Scholar 

  37. Kim, H. P., Byun, S. M., Yeom, Y. I., & Kim, S. W. (1983). Immobilization of urokinase on agarose matrices. Journal of Pharmaceutical Sciences, 72, 225–228

    Article  CAS  Google Scholar 

  38. Kim, N. D., Kim, H. P., Byun, S. M., & Kim, S. W. (1985). Urokinase conjugated with water-soluble dextran. Bulletin of the Korean Chemical Society, 6, 210–214

    CAS  Google Scholar 

  39. Pessela, B. C. C., Mateo, C., Fuentes, M., Vian, A., Garcı́a, J. L., Carrascosa, A. V. … Fernández-Lafuente, R. (2003). The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products. Enzyme and Microbial Technology, 33, 199–205

    Article  CAS  Google Scholar 

  40. Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 5, 4503–4513

    Article  Google Scholar 

Download references

Acknowledgements

S. Evli and B. Öndeş thank the Higher Education Council of Turkey (YOK) for 100/2000 PhD scholarship and TUBITAK for the 2211 C BIDEB PhD scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Baha Öndeş: investigation; Murat Uygun: research conceptualization, writing (review and editing), data curation, and methodology; Sinem Evli: investigation; Deniz Aktaş Uygun: supervision, research conceptualization, writing (review and editing), data curation, and methodology.

Corresponding author

Correspondence to Deniz Aktaş Uygun.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All of the authors consent to participate.

Consent for Publication

All authors consent to publish the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(MP4 5.18 MB) 

(MP4 6.39 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öndeş, B., Uygun, M., Evli, S. et al. Immobilization of Urokinase onto Magnetically Directed Micromotors. Appl Biochem Biotechnol 194, 3351–3364 (2022). https://doi.org/10.1007/s12010-022-03878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03878-9

Keywords

Profiles

  1. Baha Öndeş
  2. Deniz Aktaş Uygun