Skip to main content
Log in

Nitrogen Removal Performance of Novel Isolated Bacillus sp. Capable of Simultaneous Heterotrophic Nitrification and Aerobic Denitrification

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The control of nitrogenous pollutants is a key concern in aquaculture production. Bacillus spp. are commonly used as probiotics in aquaculture, but only a few reports have focused on the simultaneous heterotrophic nitrification and aerobic denitrification (SND) capacity of Bacillus sp. strains. In order to improve nitrogen biodegradation efficiency in the aquaculture industry, the SND capacity of Bacillus sp. strains was evaluated using both individual and mixed nitrogen sources and different sources of organic carbon. Twelve Bacillus sp. isolates were screened from aquaculture pond sediments and shrimp guts for nitrogen biodegradation. Six strains exhibited especially efficient inorganic nitrogen removal capacities in media with individual and mixed nitrogen sources. These strains comprise K8, N2, and N5 (B. subtilis), HYS (B. albus), H4 (B. amyloliquefaciens), and S1 (B. velezensis). The strains grew better when the sole nitrogen source was NH4+-N, but degraded nitrogen in the following order: nitrite nitrogen (NO2-N), ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3-N). There was no associated NO2-N accumulation, regardless of the nitrogen source. The optimal carbon source for nitrogen removal varied based on different nitrogen sources and associated metabolic pathways. The optimal carbon sources for the removal of NO3-N, NO2-N, and NH4+-N were sodium citrate, sodium acetate, and sucrose, respectively. The application of H4 in recirculating aquaculture water further demonstrated that NO2-N and NH4+-N could be effectively removed. This study thus provides valuable technical support for the bioremediation of aquaculture water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Huang, F., Pan, L., He, Z., Zhang, M., & Zhang, M. (2020). Identification, interactions, nitrogen removal pathways and performances of culturable heterotrophic nitrification-aerobic denitrification bacteria from mariculture water by using cell culture and metagenomics. Science of the Total Environment, 732, 139268. https://doi.org/10.1016/j.scitotenv.2020.139268

    Article  CAS  PubMed  Google Scholar 

  2. Moreno-Andres, J., Rueda-Marquez, J. J., Homola, T., Vielma, J., Morinigo, M. A., Mikola, A., Sillanpaa, M., Acevedo-Merino, A., Nebot, E., & Levchuk, I. (2020). A comparison of photolytic, photochemical and photocatalytic processes for disinfection of recirculation aquaculture systems (RAS) streams. Water Research, 181, 115928. https://doi.org/10.1016/j.watres.2020.115928

    Article  CAS  PubMed  Google Scholar 

  3. Huang, Y., Chen, X., Li, P., Chen, G., Peng, L., & Pan, L. (2018). Pressurized Microcystis can help to remove nitrate from eutrophic water. Bioresource Technology, 248, 140–145. https://doi.org/10.1016/j.biortech.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  4. Qiao, Z., Sun, R., Wu, Y., Hu, S., Liu, X., Chan, J., & Mi, X. (2020). Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems. Environmental Research, 191, 110069. https://doi.org/10.1016/j.envres.2020.110069

    Article  CAS  PubMed  Google Scholar 

  5. Padhi, S. K., & Maiti, N. K. (2017). Molecular insight into the dynamic central metabolic pathways of Achromobacter xylosoxidans CF-S36 during heterotrophic nitrogen removal processes. Journal of Bioscience and Bioengineering, 123, 46–55. https://doi.org/10.1016/j.jbiosc.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  6. Huang, S., Zhu, G., & Gu, X. (2020). The relationship between energy production and simultaneous nitrification and denitrification via bioelectric derivation of microbial fuel cells at different anode numbers. Environmental Research, 184, 109247. https://doi.org/10.1016/j.envres.2020.109247

    Article  CAS  PubMed  Google Scholar 

  7. Chun, S. J., Cui, Y., Ahn, C. Y., & Oh, H. M. (2018). Improving water quality using settleable microalga Ettlia sp. and the bacterial community in freshwater recirculating aquaculture system of Danio rerio. Water Research, 135, 112–121. https://doi.org/10.1016/j.watres.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y., & Wang, J. (2019). Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Science of the Total Environment, 671, 388–403. https://doi.org/10.1016/j.scitotenv.2019.03.317

    Article  CAS  PubMed  Google Scholar 

  9. Pang, Y., & Wang, J. (2021). Various electron donors for biological nitrate removal: A review. Science of the Total Environment, 794, 148699. https://doi.org/10.1016/j.scitotenv.2021.148699

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J., & Chu, L. (2016). Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology Advances, 34, 1103–1112. https://doi.org/10.1016/j.biotechadv.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  11. Wu, J., Yin, Y., & Wang, J. (2018). Hydrogen-based membrane biofilm reactors for nitrate removal from water and wastewater. International Journal of Hydrogen Energy, 43, 1–15. https://doi.org/10.1016/j.ijhydene.2017.10.178

    Article  CAS  Google Scholar 

  12. Rout, P. R., Bhunia, P., & Dash, R. R. (2017). Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 244, 484–495. https://doi.org/10.1016/j.biortech.2017.07.186

    Article  CAS  PubMed  Google Scholar 

  13. Bai, H., Liao, S., Wang, A., Huang, J., Shu, W., & Ye, J. (2019). High-efficiency inorganic nitrogen removal by newly isolated Pannonibacter phragmitetus B1. Bioresource Technology, 271, 91–99. https://doi.org/10.1016/j.biortech.2018.09.090

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J., Xu, J., Zhang, S., Liu, F., Peng, J., Peng, Y., & Wu, J. (2021). Nitrogen removal characteristics of a novel heterotrophic nitrification and aerobic denitrification bacteria, Alcaligenes faecalis strain WT14. Journal of Environmental Management, 282, 111961. https://doi.org/10.1016/j.jenvman.2021.111961

    Article  CAS  PubMed  Google Scholar 

  15. Gao, J., Gao, D., Liu, H., Cai, J., Zhang, J., & Qi, Z. (2018). Biopotentiality of High Efficient Aerobic Denitrifier Bacillus megaterium S379 for Intensive Aquaculture Water Quality Management. Journal of Environmental Management, 222, 104–111. https://doi.org/10.1016/j.jenvman.2018.05.073

    Article  CAS  PubMed  Google Scholar 

  16. Lang, X., Li, Q., Ji, M., Yan, G., & Guo, S. (2020). Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, Acinetobacter sp. YS2. Bioresource Technology, 302, 122799.

    Article  CAS  Google Scholar 

  17. Xia, L., Li, X., Fan, W., & Wang, J. (2020). Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource Technology, 301, 122749. https://doi.org/10.1016/j.biortech.2020.122749

    Article  CAS  PubMed  Google Scholar 

  18. Xie, F., Thiri, M., & Wang, H. (2021). Simultaneous heterotrophic nitrification and aerobic denitrification by a novel isolated Pseudomonas mendocina X49. Bioresource Technology, 319, 124198. https://doi.org/10.1016/j.biortech.2020.124198

    Article  CAS  PubMed  Google Scholar 

  19. Yang, X. P., Wang, S. M., Zhang, D. W., & Zhou, L. X. (2011). Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1. Bioresource Technology, 102, 854–862. https://doi.org/10.1016/j.biortech.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  20. Chen, J., Gu, S., Hao, H., & Chen, J. (2016). Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification. Applied Microbiology and Biotechnology, 100, 9787–9794. https://doi.org/10.1007/s00253-016-7840-x

    Article  CAS  PubMed  Google Scholar 

  21. Lei, X., Jia, Y., Chen, Y., & Hu, Y. (2019). Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81. Bioresource Technology, 272, 442–450. https://doi.org/10.1016/j.biortech.2018.10.060

    Article  CAS  PubMed  Google Scholar 

  22. Li, C., Yang, J., Wang, X., Wang, E., Li, B., He, R., & Yuan, H. (2015). Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresource Technology, 182, 18–25. https://doi.org/10.1016/j.biortech.2015.01.100

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Q., & He, J. (2020). Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. Water Resources, 185, 116300. https://doi.org/10.1016/j.watres.2020.116300

    Article  CAS  Google Scholar 

  24. Wen, G., Wang, T., Li, K., Wang, H., Wang, J., & Huang, T. (2019). Aerobic denitrification performance of strain Acinetobacter johnsonii WGX-9 using different natural organic matter as carbon source: Effect of molecular weight. Water Research, 164, 114956. https://doi.org/10.1016/j.watres.2019.114956

    Article  CAS  PubMed  Google Scholar 

  25. Thurlow, C. M., Williams, M. A., Carrias, A., Ran, C., Newman, M., Tweedie, J., Allison, E., Jescovitch, L. N., Wilson, A. E., Terhune, J. S., & Liles, M. R. (2019). Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture, 503, 347–356. https://doi.org/10.1016/j.aquaculture.2018.11.051

    Article  Google Scholar 

  26. Truong Thy, H. T., Tri, N. N., Quy, O. M., Fotedar, R., Kannika, K., Unajak, S., & Areechon, N. (2017). Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish & Shellfish Immunology, 60, 391–399. https://doi.org/10.1016/j.fsi.2016.11.016

    Article  CAS  Google Scholar 

  27. Das, A., Nakhro, K., Chowdhury, S., & Kamilya, D. (2013). Effects of potential probiotic Bacillus amyloliquefaciens [corrected] FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish & Shellfish Immunology, 35, 1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022

    Article  CAS  Google Scholar 

  28. Fei, H., Lin, G. D., Zheng, C. C., Huang, M. M., Qian, S. C., Wu, Z. J., Sun, C., Shi, Z. G., Li, J. Y., & Han, B. N. (2018). Effects of Bacillus amyloliquefaciens and Yarrowia lipolytica lipase 2 on immunology and growth performance of Hybrid sturgeon. Fish & Shellfish Immunology, 82, 250–257. https://doi.org/10.1016/j.fsi.2018.08.031

    Article  CAS  Google Scholar 

  29. Saputra, F., Shiu, Y. L., Chen, Y. C., Puspitasari, A. W., Danata, R. H., Liu, C. H., & Hu, S. Y. (2016). Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 58, 397–405. https://doi.org/10.1016/j.fsi.2016.09.046

    Article  CAS  Google Scholar 

  30. Selim, K. M., & Reda, R. M. (2015). Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish & Shellfish Immunology, 44, 496–503. https://doi.org/10.1016/j.fsi.2015.03.004

    Article  CAS  Google Scholar 

  31. Huang, F., Pan, L., Lv, N., & Tang, X. (2017). Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification. Journal of Bioscience and Bioengineering, 124, 564–571. https://doi.org/10.1016/j.jbiosc.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, M., Pan, L., Su, C., Liu, L., & Dou, L. (2021). Simultaneous aerobic removal of phosphorus and nitrogen by a novel salt-tolerant phosphate-accumulating organism and the application potential in treatment of domestic sewage and aquaculture sewage. Science of the Total Environment, 758, 143580. https://doi.org/10.1016/j.scitotenv.2020.143580

    Article  CAS  PubMed  Google Scholar 

  33. He, T., Xie, D., Li, Z., Ni, J., & Sun, Q. (2017). Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10. Bioresource Technology, 239, 66–73. https://doi.org/10.1016/j.biortech.2017.04.125

    Article  CAS  PubMed  Google Scholar 

  34. Sun, Z., Lv, Y., Liu, Y., & Ren, R. (2016). Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresource Technology, 220, 142–150. https://doi.org/10.1016/j.biortech.2016.07.110

    Article  CAS  PubMed  Google Scholar 

  35. Yang, L., Ren, Y. X., Liang, X., Zhao, S. Q., Wang, J. P., & Xia, Z. H. (2015). Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater. Bioresource Technology, 193, 227–233. https://doi.org/10.1016/j.biortech.2015.05.075

    Article  CAS  PubMed  Google Scholar 

  36. Padhi, S. K., Tripathy, S., Mohanty, S., & Maiti, N. K. (2017). Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine. Bioresource Technology, 232, 285–296. https://doi.org/10.1016/j.biortech.2017.02.049

    Article  PubMed  Google Scholar 

  37. Wan, W., He, D., & Xue, Z. (2017). Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15. Ecological Engineering, 99, 199–208. https://doi.org/10.1016/j.ecoleng.2016.11.030

    Article  Google Scholar 

  38. John, E. M., Krishnapriya, K. and Sankar, T. V. (2020) Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture, 526. https://doi.org/10.1016/j.aquaculture.2020.735390

  39. Yun, L., Yu, Z., Li, Y., Luo, P., Jiang, X., Tian, Y., & Ding, X. (2019). Ammonia nitrogen and nitrite removal by a heterotrophic Sphingomonas sp. strain LPN080 and its potential application in aquaculture. Aquaculture, 500, 477–484. https://doi.org/10.1016/j.aquaculture.2018.10.054

    Article  CAS  Google Scholar 

  40. Hui, C., Guo, X., Sun, P., Khan, R. A., Zhang, Q., Liang, Y., & Zhao, Y. H. (2018). Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption. Bioresource Technology, 248, 146–152. https://doi.org/10.1016/j.biortech.2017.06.176

    Article  CAS  PubMed  Google Scholar 

  41. Xu, N., Liao, M., Liang, Y., Guo, J., Zhang, Y., Xie, X., Fan, Q., & Zhu, Y. (2021). Biological nitrogen removal capability and pathways analysis of a novel low C/N ratio heterotrophic nitrifying and aerobic denitrifying bacterium (Bacillus thuringiensis strain WXN-23). Environmental Research, 195, 110797. https://doi.org/10.1016/j.envres.2021.110797

    Article  CAS  PubMed  Google Scholar 

  42. Emam, A. M., & Dunlap, C. A. (2020). Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; a potential probiotic to control pathogens in aquaculture. Antonie van Leeuwenhoek, 113, 2041–2052. https://doi.org/10.1007/s10482-020-01476-5

    Article  CAS  PubMed  Google Scholar 

  43. Verma, M., Ekka, A., Mohapatra, T. and Ghosh, P. (2020) Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology. Journal of Environmental Chemical Engineering, 8. https://doi.org/10.1016/j.jece.2020.104270

  44. Yan, P., Zhang, X.-T., Hu, L.-J., Wang, Y.-H., Zhu, M.-L., Wu, X.-Q., & Chen, F. (2020). Two novel strains, Bacillus albus JK-XZ3 and B. velezensis JK-XZ8, with activity against Cerasus crown gall disease in Xuzhou. China. Australasian Plant Pathology, 49, 127–136. https://doi.org/10.1007/s13313-020-00682-z

    Article  CAS  Google Scholar 

  45. Gogoi, M., Bhattacharya, P., Kumar Sen, S., Mukherjee, I., Bhushan, S. and Chaudhuri, S. R. (2021) Aquaculture effluent treatment with ammonia remover Bacillus albus (ASSF01). Journal of Environmental Chemical Engineering, 9. https://doi.org/10.1016/j.jece.2021.105697

  46. Guo, Y., Zhou, X., Li, Y., Li, K., Wang, C., Liu, J., Yan, D., Liu, Y., Yang, D., & Xing, J. (2013). Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnology Letters, 35, 2045–2049. https://doi.org/10.1007/s10529-013-1294-3

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Q. L., Liu, Y., Ai, G. M., Miao, L. L., Zheng, H. Y., & Liu, Z. P. (2012). The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresource Technology, 108, 35–44. https://doi.org/10.1016/j.biortech.2011.12.139

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Major Special Projects and Engineering Plans of Tianjin (no. 17ZXYENC00070).

Author information

Authors and Affiliations

Authors

Contributions

Fengfeng Zhang: formal analysis, investigation, methodology. Fengxing xie: writing-original draft preparation, writing-reviewing and editing, funding acquisition. Ke Zhou: application in recirculating aquaculture water, investigation. Yue Zhang: project administration. Qiong Zhao: resources. Zaowei Song: supervision. Hanyuan Cui: methodology.

Corresponding author

Correspondence to Fengxing Xie.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Xie, F., Zhou, K. et al. Nitrogen Removal Performance of Novel Isolated Bacillus sp. Capable of Simultaneous Heterotrophic Nitrification and Aerobic Denitrification. Appl Biochem Biotechnol 194, 3196–3211 (2022). https://doi.org/10.1007/s12010-022-03877-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03877-w

Keywords

Navigation