Skip to main content

Advertisement

Log in

Bacteriocins from lactic acid bacteria and their potential clinical applications

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteriocins are ribosomally synthesized antimicrobial peptides that have long been used in the food industry. Being a highly diverse and heterogeneous group of molecules the classification is ever-evolving. Their production is widespread among bacteria; nevertheless, their biosynthesis and mode of action remain fairly similar. With the advances in drug resistance mechanisms, it is important to look for alternatives to conventional approaches. Therefore, the advantages of bacteriocin over antibiotics need to be considered to provide a scientific basis for their use. Particularly in the last decade, intensive studies look at their potential as next-generation therapeutics against drug-resistant bacteria. Bacteriocins from lactic acid bacteria are being tested as controlling agents for bacterial and viral infections; they can inhibit biofilm synthesis and have potential as contraceptives. Bioengineered peptides have shown enhanced activity and thereby indicate the lack of knowledge we possess regarding these bacteriocins. In this review, we have listed various Gram-positive LAB bacteriocins with their synthesis and mechanism of action. Recent developments in screening and purification technologies have been analyzed with an emphasis on their potential clinical applications. Although extensive research has been done to identify multifunctional bacteriocins, it is important to focus on the mechanism of action of these peptides to get them from bench to bedside.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article [and its supplementary information files].

Code availability

Not applicable.

References

  1. Abanoz, H. S., & Kunduhoglu, B. (2018). Antimicrobial Activity of a Bacteriocin Produced by Enterococcus faecalis {KT}11 against Some Pathogens and Antibiotic-Resistant Bacteria. Korean Journal for Food Science of Animal Resources, 38(5), 1064–1079. https://doi.org/10.5851/kosfa.2018.e40

    Article  PubMed  PubMed Central  Google Scholar 

  2. Acuña, L., Picariello, G., Sesma, F., Morero, R. D., & Bellomio, A. (2012). A new hybrid bacteriocin, Ent35-{MccV}, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio, 2(1), 12–19. https://doi.org/10.1016/j.fob.2012.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen-McFarlane, R. (2019). ISOLATION {AND} CHARACTERIZATION {OF} L. parafarraginis ({KU}495926) INHIBITING {MULTIDRUG}-{RESISTANT} AND {EXTENDED} SPECTRUM ?{ETA}-{LACTAMASE} GRAM}-{NEGATIVE {BACTERIA}. Journal of Microbiology, Biotechnology and Food Sciences, 8(4), 1041. https://doi.org/10.15414/jmbfs.2019.8.4.1041-1053

    Article  CAS  Google Scholar 

  4. Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100(7), 2939–2951. https://doi.org/10.1007/s00253-016-7343-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ananou, S., Maqueda, M., Martínez-Bueno, M., Gálvez, A., & Valdivia, E. (2005). Control of Staphylococcus aureus in sausages by enterocin {AS}-48. Meat Science, 71(3), 549–556. https://doi.org/10.1016/j.meatsci.2005.04.039

    Article  CAS  PubMed  Google Scholar 

  6. Ansari, A., Zohra, R. R., Tarar, O. M., Qader, S. A. U., & Aman, A. (2018). Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiology, 18(1), 1–10. https://doi.org/10.1186/s12866-018-1337-y

    Article  CAS  Google Scholar 

  7. Badaoui Najjar, M., Kashtanov, D., & Chikindas, M. L. (2009). Natural Antimicrobials ε-Poly-l-lysine and Nisin A for Control of Oral Microflora. Probiotics and Antimicrobial Proteins, 1(2), 143–147. https://doi.org/10.1007/s12602-009-9020-0

    Article  CAS  PubMed  Google Scholar 

  8. Balthazar, C. F., Pimentel, T. C., Ferrão, L. L., Almada, C. N., Santillo, A., Albenzio, M., Mollakhalili, N., Mortazavian, A. M., Nascimento, J. S., Silva, M. C., Freitas, M. Q., Sant’Ana, A. S., Granato, D., & Cruz, A. G. (2017). Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Comprehensive Reviews in Food Science and Food Safety, 16(2), 247–262. https://doi.org/10.1111/1541-4337.12250

    Article  CAS  PubMed  Google Scholar 

  9. Bierbaum, G., & Sahl, H.-G. (2009). Lantibiotics: Mode of Action, Biosynthesis and Bioengineering. Current Pharmaceutical Biotechnology, 10(1), 2–18. https://doi.org/10.2174/138920109787048616

    Article  CAS  PubMed  Google Scholar 

  10. Birri, D. J., Brede, D. A., Forberg, T., Holo, H., & Nes, I. F. (2009). Molecular and Genetic Characterization of a Novel Bacteriocin Locus in Enterococcus avium Isolates from Infants. Applied and Environmental Microbiology, 76(2), 483–492. https://doi.org/10.1128/aem.01597-09

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boman, H. G. (1995). Peptide Antibiotics and their Role in Innate Immunity. Annual Review of Immunology, 13(1), 61–92. https://doi.org/10.1146/annurev.iy.13.040195.000425

    Article  CAS  PubMed  Google Scholar 

  12. Bonhi, K. L. R., & Imran, S. (2019). Role Of Bacteriocin In Tackling The Global Problem Of Multi-Drug Resistance : An Updated Review. Bioscience Biotechnology Research Communications, 12(3), 601–608. https://doi.org/10.21786/bbrc/12.3/8

    Article  Google Scholar 

  13. Bonhi, K. L. R., & Imran, S. (2019). Role Of Bacteriocin In Tackling The Global Problem Of Multi-Drug Resistance : An Updated Review. Bioscience Biotechnology Research Communications, 12(3), 601–608. https://doi.org/10.21786/bbrc/12.3/8

    Article  Google Scholar 

  14. Borges, S., & Teixeira, P. (2016). Application of bacteriocins in food and health care. Bacteriocins: Production, Applications and Safety, January 2016, 47–75.

  15. Carroll, J., Draper, L. A., O’Connor, P. M., Coffey, A., Hill, C., Ross, R. P., Cotter, P. D., & O’Mahony, J. (2010). Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. International Journal of Antimicrobial Agents, 36(2), 132–136. https://doi.org/10.1016/j.ijantimicag.2010.03.029

    Article  CAS  PubMed  Google Scholar 

  16. Carroll, J., & Mahony, J. O. (2011). Anti-mycobacterial peptides: Made to order with delivery included. Bioengineered Bugs, 2(5), 241–246. https://doi.org/10.4161/bbug.2.5.16229

    Article  PubMed  Google Scholar 

  17. Cheigh, C.-I., Kook, M.-C., Kim, S.-B., Hong, Y.-H., & Pyun, Y.-R. (2004). Simple one-step purification of nisin~Z from unclarified culture broth of Lactococcus lactis subsp. lactis A164 using expanded bed ion exchange chromatography. Biotechnology Letters, 26(17), 1341–1345. https://doi.org/10.1023/b:bile.0000045630.29494.45

    Article  CAS  PubMed  Google Scholar 

  18. Chiu, Y.-H., Hsieh, Y.-J., Liao, K.-W., & Peng, K.-C. (2010). Preferential promotion of apoptosis of monocytes by Lactobacillus casei rhamnosus soluble factors. Clinical Nutrition, 29(1), 131–140. https://doi.org/10.1016/j.clnu.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  19. Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1–20. https://doi.org/10.1016/s0168-1605(01)00560-8

    Article  CAS  PubMed  Google Scholar 

  20. Corsetti, A., Settanni, L., & Van Sinderen, D. (2004). Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. Journal of Applied Microbiology, 96(3), 521–534. https://doi.org/10.1111/j.1365-2672.2004.02171.x

    Article  CAS  PubMed  Google Scholar 

  21. Cotter, P. D., Hill, C., & Ross, P. R. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777–788. https://doi.org/10.1038/nrmicro1240

    Article  CAS  PubMed  Google Scholar 

  22. Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins-a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  23. Coventry, M. J., Gordon, J. B., Alexander, M., Hickey, M. W., & Wan, J. (1996). A food-grade process for isolation and partial purification of bacteriocins of lactic acid bacteria that uses diatomite calcium silicate. Applied and Environmental Microbiology, 62(5), 1764–1769. https://doi.org/10.1128/aem.62.5.1764-1769.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. da Costa, R. J., Voloski, F. L. S., Mondadori, R. G., Duval, E. H., & Fiorentini, Â. M. (2019). Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. Journal of Food Quality, 2019, 1–12. https://doi.org/10.1155/2019/4726510

  25. Daw, M. A., & Falkiner, F. R. (1996). Bacteriocins: Nature, function and structure. Micron, 27(6), 467–479. https://doi.org/10.1016/s0968-4328(96)00028-5

    Article  CAS  PubMed  Google Scholar 

  26. de Moreno de LeBlanc, A., Matar, C., LeBlanc, N., & Perdigón, G. (2005). Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Research : BCR, 7(4). https://doi.org/10.1186/bcr1032

  27. De Vos, W. M. (1993). Future Prospects for Research and Applications of Nisin and Other Bacteriocins.In Bacteriocins of Lactic Acid Bacteria (Vol. 1928). ACADEMIC PRESS, INC. https://doi.org/10.1016/b978-0-12-355510-6.50020-8

  28. del Rocio López-Cuellar, M., Rodriguez-Hernández, A.-I., & Chavarría-Hernández, N. (2016). LAB bacteriocin applications in the last decade. Biotechnology & Biotechnological Equipment, 30(6), 1039–1050. https://doi.org/10.1080/13102818.2016.1232605

    Article  CAS  Google Scholar 

  29. Dimov, S. G., Ivanova, P. M., Harizanova, N. T., & Ivanova, I. V. (2005). Bioactive Peptides used by Bacteria in the Concur-Rence for the Ecological Niche: General Classification and Mode of Action (Overview). Biotechnology & Biotechnological Equipment, 19(2), 3–22. https://doi.org/10.1080/13102818.2005.10817185

    Article  CAS  Google Scholar 

  30. do Carmo de Freire Bastos, M., Coutinho, B. G., & Coelho, M. L. V. (2010). Lysostaphin: A Staphylococcal Bacteriolysin with Potential Clinical Applications. Pharmaceuticals, 3(4), 1139–1161. https://doi.org/10.3390/ph3041139

    Article  CAS  Google Scholar 

  31. Dutta B., Nag M., Lahiri D., Ray R.R. (2021) Analysis of Biofilm Matrix by Multiplex Fluorescence In Situ Hybridization (M-FISH) and Confocal Laser Scanning Microscopy (CLSM) During Nosocomial Infections. In: Nag M., Lahiri D. (eds) Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_8

  32. Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiology Reviews, 24(1), 85–106. https://doi.org/10.1111/j.1574-6976.2000.tb00534.x

    Article  CAS  PubMed  Google Scholar 

  33. Fadela Chaib, Jhon Butler, Seockhwan Hwang. (2019). New report calls for urgent action to avert antimicrobial resistance crisis. WHO NEWSLETTER, Joint News Releasehttps://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. Accessed May 2021.

  34. Field, D., Begley, M., O’Connor, P. M., Daly, K. M., Hugenholtz, F., Cotter, P. D., Hill, C., & Ross, R. P. (2012). Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens. PLoS One, 7(10), e46884. https://doi.org/10.1371/journal.pone.0046884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Field, D., Cotter, P. D., Ross, R. P., & Hill, C. (2015). Bioengineering of the model lantibiotic nisin. Bioengineered, 6(4), 187–192. https://doi.org/10.1080/21655979.2015.1049781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Field, D., Ross, R. P., & Hill, C. (2018). Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 20, 1–6. https://doi.org/10.1016/j.cofs.2018.02.004

    Article  Google Scholar 

  37. Garneau, S., Martin, N. I., & Vederas, J. C. (2002). Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie, 84(5–6), 577–592. https://doi.org/10.1016/s0300-9084(02)01414-1

    Article  CAS  PubMed  Google Scholar 

  38. Gaspar, C., Donders, G. G., Palmeira-de-Oliveira, R., Queiroz, J. A., Tomaz, C., Martinez-de-Oliveira, J., & Palmeira-de-Oliveira, A. (2018). Bacteriocin production of the probiotic Lactobacillus acidophilus KS400. AMB Express, 8(1). https://doi.org/10.1186/s13568-018-0679-z

  39. Gharsallaoui, A., Oulahal, N., Joly, C., & Degraeve, P. (2015). Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Critical Reviews in Food Science and Nutrition, 56(8), 1262–1274. https://doi.org/10.1080/10408398.2013.763765

    Article  CAS  Google Scholar 

  40. Gilmore, M. S., Segarra, R. A., Booth, M. C., Bogie, C. P., Hall, L. R., & Clewell, D. B. (1994). Genetic structure of the Enterococcus faecalis plasmid {pAD}1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. Journal of Bacteriology, 176(23), 7335–7344. https://doi.org/10.1128/jb.176.23.7335-7344.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giri, S., & Singh, J. (2013). New Face in the Row of Human Therapeutics: Bacteriocins. Journal of M Icrobiology Research, 3(2), 71–78. http://article.sapub.org/10.5923.j.microbiology.20130302.02.html. Accessed May 2021.

  42. Gong, X., Martin-Visscher, L. A., Nahirney, D., Vederas, J. C., & Duszyk, M. (2009). The circular bacteriocin, carnocyclin A, forms anion-selective channels in lipid bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1788(9), 1797–1803. https://doi.org/10.1016/j.bbamem.2009.05.008

    Article  CAS  Google Scholar 

  43. Gradisteanu Pircalabioru, G., Popa, L. I., Marutescu, L., Gheorghe, I., Popa, M., Czobor Barbu, I., Cristescu, R., & Chifiriuc, M.-C. (2021). Bacteriocins in the Era of Antibiotic Resistance: Rising to the Challenge. Pharmaceutics, 13, 196. https://doi.org/10.3390/pharmaceutics13020196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Graham, C. E., Cruz, M. R., Garsin, D. A., & Lorenz, M. C. (2017). Enterococcus faecalisbacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence ofCandida albicans. Proceedings of the National Academy of Sciences, 114(17), 4507–4512. https://doi.org/10.1073/pnas.1620432114

    Article  CAS  Google Scholar 

  45. Grinter, R., Milner, J., & Walker, D. (2012). Bacteriocins active against plant pathogenic bacteria. Biochemical Society Transactions, 40(6), 1498–1502. https://doi.org/10.1042/bst20120206

    Article  CAS  PubMed  Google Scholar 

  46. Gross, E., & Morell, J. L. (1971). Structure of nisin. Journal of the American Chemical Society, 93(18), 4634–4635. https://doi.org/10.1021/ja00747a073

    Article  CAS  PubMed  Google Scholar 

  47. Guinane, C. M., Cotter, P. D., Hill, C., & Ross, R. P. (2005). Microbial solutions to microbial problems$\mathsemicolon$ lactococcal bacteriocins for the control of undesirable biota in food. Journal of Applied Microbiology, 98(6), 1316–1325. https://doi.org/10.1111/j.1365-2672.2005.02552.x

  48. Güllüce, M., Karadayı, M., & Bariş, Ö. (2013). Bacteriocins: Promising Natural Antimicrobials. Local Environment, 3,6. https://doi.org/10.13140/2.1.5014.5606

  49. Gutkind, G. O., Conza, J. D., Power, P., & Radice, M. (2013). $\upbeta$-lactamase-mediated Resistance: A Biochemical, Epidemiological and Genetic Overview. Current Pharmaceutical Design, 19(2), 164–208. https://doi.org/10.2174/138161213804070320

  50. Hassanzadazar, H., Ehsani, A., Mardani, K., & Hesari, J. (2012). Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese. Veterinary Research Forum : An International Quarterly Journal, 3(3), 181–185. http://www.ncbi.nlm.nih.gov/pubmed/25610566/0A/http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4299980. Accessed May 2021.

  51. Hastings, J. W., Stiles, M. E., & von Holy, A. (1994). Bacteriocins of Leuconostocs isolated from meat. International Journal of Food Microbiology, 24(1–2), 75–81. https://doi.org/10.1016/0168-1605(94)90107-4

    Article  CAS  PubMed  Google Scholar 

  52. Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals, 11, 979. https://doi.org/10.3390/ani11040979

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hoover, D. G., & Steenson, L. R. (1993). Preface. In Bacteriocins of Lactic Acid Bacteria (pp. xix--xx). Elsevier. https://doi.org/10.1016/b978-0-12-355510-6.50008-7

  54. Jack, R. W., Tagg, J. R., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiological Reviews, 59(2), 171–200. https://doi.org/10.1128/mmbr.59.2.171-200.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jett, B. D., & Gilmore, M. S. (1990). The Growth-inhibitory Effect of the Enterococcus faecalis Bacteriocin Encoded by pADl Extends to the Oral Streptococci. Journal of Dental Research, 69(10), 1640–1645. https://doi.org/10.1177/00220345900690100301

    Article  CAS  PubMed  Google Scholar 

  56. Jiang, H., Zou, J., Cheng, H., Fang, J., & Huang, G. (2017). Purification, Characterization, and Mode of Action of Pentocin JL-1, a Novel Bacteriocin Isolated from Lactobacillus pentosus, against Drug-Resistant Staphylococcus aureus.BioMed Research International, 2017https://doi.org/10.1155/2017/7657190

  57. Joerger, R. D. (2003). Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poultry Science, 82(4), 640–647. https://doi.org/10.1093/ps/82.4.640

    Article  CAS  PubMed  Google Scholar 

  58. Karpiński, T. M., & Szkaradkiewicz, A. K. (2016). Bacteriocins. In Encyclopedia of Food and Health (pp. 312–319). Elsevier. https://doi.org/10.1016/b978-0-12-384947-2.00053-2

  59. Kato, I., Yokokura, T., & Mutai, M. (1984). Augmentation of Mouse Natural Killer Cell Activity byLactobacillus caseiand Its Surface Antigens. Microbiology and Immunology, 28(2), 209–217. https://doi.org/10.1111/j.1348-0421.1984.tb00672.x

    Article  CAS  PubMed  Google Scholar 

  60. Kaur, B., Balgir, P. P., Mittu, B., Kumar, B., & Garg, N. (2013). Biomedical Applications of Fermenticin HV6b Isolated from Lactobacillus fermentum HV6b MTCC10770. 2013.

  61. Kaur, K., Andrew, L. C., Wishart, D. S., & Vederas, J. C. (2004). Dynamic Relationships among Type IIa Bacteriocins:~ Temperature Effects on Antimicrobial Activity and on Structure of the C-Terminal Amphipathic $\upalpha$ Helix as a Receptor-Binding Region{\textdaggerdbl}. Biochemistry, 43(28), 9009–9020. https://doi.org/10.1021/bi036018e

  62. Kawamoto, S., Shima, J., Sato, R., Eguchi, T., Ohmomo, S., Shibato, J., Horikoshi, N., Takeshita, K., & Sameshima, T. (2002). Biochemical and Genetic Characterization of Mundticin KS}, an Antilisterial Peptide Produced by Enterococcus mundtii {NFRI 7393. Applied and Environmental Microbiology, 68(8), 3830–3840. https://doi.org/10.1128/aem.68.8.3830-3840.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klaenhammer, T. R.; Fremaux, C. and Hechard, H. De Roissart and F. M. Luquet, L. (1994). No Title. Activité Antimicrobienne Des Bactéries Lactiques. In-Bactéries Latiques.

  64. Lahiri, D., Dash, S., Dutta, R., et al. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44, 52. https://doi.org/10.1007/s12038-019-9868-4

    Article  PubMed  Google Scholar 

  65. Lahiri, D., Nag, M., Dutta, B., et al. (2021a). Artificial Neural Network and Response Surface Methodology-Mediated Optimization of Bacteriocin Production by Rhizobium leguminosarum. Iranian Journal of Science and Technology, Transaction A: Science, 45, 1509–1517. https://doi.org/10.1007/s40995-021-01157-6

    Article  Google Scholar 

  66. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). b) Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Frontiers in Microbiology, 12, 636588. https://doi.org/10.3389/fmicb.2021.636588

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lahiri D., Chakraborti S., Jasu A., Nag M., Dutta B., Dash S., Ray R.. Production and purification of bacteriocin from Leuconostoc lactis SM 2 strain. Biocatalysis and Agricultural Biotechnology,Volume 30, (2020),101845, ISSN 1878–8181, https://doi.org/10.1016/j.bcab.2020.101845.

  68. Liu, W. J., Chen, Y. F., Kwok, L. Y., Li, M. H., Sun, T., Sun, C. L., Wang, X. N., Dan, T., Menghebilige, Zhang, H. P., & Sun, T. S. (2013). Preliminary selection for potential probiotic Bifidobacterium isolated from subjects of different Chinese ethnic groups and evaluation of their fermentation and storage characteristics in bovine milk. Journal of Dairy Science, 96(11), 6807–6817. https://doi.org/10.3168/jds.2013-6582

    Article  CAS  PubMed  Google Scholar 

  69. Lü, X., Yi, L., Dang, J., Dang, Y., & Liu, B. (2014). Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control, 46, 264–271. https://doi.org/10.1016/j.foodcont.2014.05.028

    Article  CAS  Google Scholar 

  70. Luo, F., Feng, S., Sun, Q., Xiang, W., Zhao, J., Zhang, J., & Yang, Z. (2011). Screening for bacteriocin-producing lactic acid bacteria from kurut, a traditional naturally-fermented yak milk from Qinghai-Tibet plateau. Food Control, 22(1), 50–53. https://doi.org/10.1016/j.foodcont.2010.05.006

    Article  CAS  Google Scholar 

  71. Macaluso, G., Fiorenza, G., Gaglio, R., Mancuso, I., & Scatassa, M. L. (2016). In vitro evaluation of bacteriocinlike inhibitory substances produced by lactic acid bacteria isolated during traditional sicilian cheese making. Italian Journal of Food Safety, 5(1), 20–22. https://doi.org/10.4081/ijfs.2016.5503

    Article  CAS  Google Scholar 

  72. Martin-Visscher, L. A., Yoganathan, S., Sit, C. S., Lohans, C. T., & Vederas, J. C. (2011). The activity of bacteriocins from Carnobacterium maltaromaticum UAL}307 against Gram-negative bacteria in combination with {EDTA treatment. FEMS Microbiology Letters, 317(2), 152–159. https://doi.org/10.1111/j.1574-6968.2011.02223.x

    Article  CAS  PubMed  Google Scholar 

  73. de Martinis, E. C. P., Santarosa, P. R., & Freitas, F. Z. (2003). Caracterização preliminar de bacteriocinas produzidas por seis cepas de bactérias láticas isoladas de produtos cárneos embalados a vácuo. Ciência e Tecnologia de Alimentos, 23(2), 195–199. https://doi.org/10.1590/s0101-20612003000200016

    Article  Google Scholar 

  74. Mataraci, E., & Dosler, S. (2012). In VitroActivities of Antibiotics and Antimicrobial Cationic Peptides Alone and in Combination against Methicillin-Resistant Staphylococcus aureus Biofilms. Antimicrobial Agents and Chemotherapy, 56(12), 6366–6371. https://doi.org/10.1128/aac.01180-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mathur, H., Field, D., Rea, M. C., Cotter, P. D., Hill, C., & Ross, R. P. (2018). Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 4(1), 1–13. https://doi.org/10.1038/s41522-018-0053-6

    Article  Google Scholar 

  76. Mathur, H., Field, D., Rea, M. C., Cotter, P. D., Hill, C., & Ross, R. P. (2018b). Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 4(1). https://doi.org/10.1038/s41522-018-0053-6

  77. Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics, 9(1). https://doi.org/10.3390/antibiotics9010032

  78. Mirlohi, M., Soleimanian-Zad, S., Dokhani, S., Sheikh-Zeinodin, M., & Abghary, A. (2009). Investigation of acid and bile tolerance of native lactobacilli isolated from fecal samples and commercial probiotics by growth and survival studies. Iranian Journal of Biotechnology, 7(4), 233–240.

    Google Scholar 

  79. Modi, K. D., Chikindas, M. L., & Montville, T. J. (2000). Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Letters in Applied Microbiology, 30(3), 249–253. https://doi.org/10.1046/j.1472-765x.2000.00708.x

    Article  CAS  PubMed  Google Scholar 

  80. Mohr, Kathrin I. (2016). [Current Topics in Microbiology and Immunology] || History of Antibiotics Research. , (Chapter 499), –. https://doi.org/10.1007/82_2016_499

  81. Mokoena, M. P. (2017). Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules, 22(8), 1255. https://doi.org/10.3390/molecules22081255

    Article  CAS  PubMed Central  Google Scholar 

  82. Morisset, D., Berjeaud, J., Marion, D., Lacombe, C., & Fre, J. (2004). Mutational Analysis of Mesentericin Y105, an Anti- Listeria Bacteriocin, for Determination of Impact on Bactericidal Activity. In Vitro Secondary Structure, and Membrane Interaction., 70(8), 4672–4680. https://doi.org/10.1128/AEM.70.8.4672

    Article  CAS  Google Scholar 

  83. Mota-Meira, M., Lapointe, G., Lacroix, C., & Lavoie, M. C. (2000). MICs of Mutacin B-Ny266, Nisin A, Vancomycin, and Oxacillin against Bacterial Pathogens. Antimicrobial Agents and Chemotherapy, 44(1), 24–29. https://doi.org/10.1128/aac.44.1.24-29.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nawaz, S. K., Riaz, S., Riaz, S., & Hasnain, S. (2009). Screening for anti-methicillin resistant Staphylococcus aureus (MRSA) bacteriocin producing bacteria. African Journal of Biotechnology, 8(3), 365–368. https://doi.org/10.5897/AJB2009.000-9064

    Article  Google Scholar 

  85. Ness, I. F., Diep, D. B., & Ike, Y. (2014). Enterococcal Bacteriocins and Antimicrobial Proteins that Contribute to Niche Control. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection, 1–33. http://www.ncbi.nlm.nih.gov/pubmed/24649514. Accessed May 2021.

  86. Nissen-Meyer, J., & Nes, I. F. (1997). Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Archives of Microbiology, 167(2–3), 67–77. https://doi.org/10.1007/s002030050418

    Article  CAS  PubMed  Google Scholar 

  87. Nissen-Meyer, J., Rogne, P., Oppegard, C., Haugen, H., & Kristiansen, P. (2009). Structure-Function Relationships of the Non-Lanthionine-Containing Peptide (class {II}) Bacteriocins Produced by Gram-Positive Bacteria. Current Pharmaceutical Biotechnology, 10(1), 19–37. https://doi.org/10.2174/138920109787048661

    Article  CAS  PubMed  Google Scholar 

  88. O’Shea, E. F., O’Connor, P. M., Cotter, P. D., Ross, R. P., & Hill, C. (2010). Synthesis of Trypsin-Resistant Variants of the Listeria-Active Bacteriocin Salivaricin P. Applied and Environmental Microbiology, 76(16), 5356–5362. https://doi.org/10.1128/aem.00523-10

    Article  PubMed  PubMed Central  Google Scholar 

  89. Okuda, K. I., Zendo, T., Sugimoto, S., Iwase, T., Tajima, A., Yamada, S., Sonomoto, K., & Mizunoe, Y. (2013). Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial Agents and Chemotherapy, 57(11), 5572–5579. https://doi.org/10.1128/AAC.00888-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oman, T. J., Boettcher, J. M., Wang, H., Okalibe, X. N., & van der Donk, W. A. (2011). Sublancin is not a lantibiotic but an S-linked glycopeptide. Nature Chemical Biology, 7(2), 78–80. https://doi.org/10.1038/nchembio.509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ongey, E. L., & Neubauer, P. (2016). Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0502-y

  92. Papagianni, M., & Anastasiadou, S. (2009). Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microbial Cell Factories, 8(1), 1–16. https://doi.org/10.1186/1475-2859-8-3

    Article  CAS  Google Scholar 

  93. Parada, J. L., Caron, C. R., Medeiros, A. B. P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology, 50(3), 521–542. https://doi.org/10.1590/s1516-89132007000300018

    Article  CAS  Google Scholar 

  94. Pepe, O., Blajotta, G., Anastasio, M., Moschetti, G., Ercolini, D., & Villani, F. (2004). Technological and Molecular Diversity of Lactobacillus plantarum Strains Isolated from Naturally Fermented Sourdoughs. Systematic and Applied Microbiology, 27(4), 443–453. https://doi.org/10.1078/0723202041438446

    Article  CAS  PubMed  Google Scholar 

  95. Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13(Suppl 1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3

    Article  PubMed  PubMed Central  Google Scholar 

  96. Perez, R. H., Zendo, T., & Sonomoto, K. (2018). Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications, and prospects. Frontiers in Microbiology, 9(SEP), 1–18. https://doi.org/10.3389/fmicb.2018.02085

    Article  CAS  Google Scholar 

  97. Preciado, G. M., Michel, M. M., Villarreal-Morales, S. L., Flores-Gallegos, A. C., Aguirre-Joya, J., Morlett-Chávez, J., Aguilar, C. N., & Rodr\’\iguez-Herrera, R. (2016). Bacteriocins and Its Use for Multidrug-Resistant Bacteria Control. In Antibiotic Resistance (pp. 329–349). Elsevier. https://doi.org/10.1016/b978-0-12-803642-6.00016-2

  98. Rajan, S. S., Cavera, V. L., Zhang, X., Singh, Y., Chikindas, M. L., & Sinko, P. J. (2014). Polyethylene Glycol-Based Hydrogels for Controlled Release of the Antimicrobial Subtilosin for Prophylaxis of Bacterial Vaginosis. Antimicrobial Agents and Chemotherapy, 58(5), 2747–2753. https://doi.org/10.1128/aac.02446-14

    Article  Google Scholar 

  99. Ramu, R., Shirahatti, P. S., Zameer, F., & Prasad, M. N. N. (2014). Investigation of antihyperglycaemic activity of banana (Musa sp. var. Nanjangud rasa bale) pseudostem in normal and diabetic rats. Journal of the Science of Food and Agriculture, 95(1), 165–173. https://doi.org/10.1002/jsfa.6698

    Article  CAS  PubMed  Google Scholar 

  100. Rogers, A. M., & Montville, T. J. (1991). Improved agar diffusion assay for nisin quantification. Food Biotechnology, 5(2), 161–168. https://doi.org/10.1080/08905439109549799

    Article  CAS  Google Scholar 

  101. Rollema, H. S., Kuipers, O. P., Both, P., de Vos, W. M., & Siezen, R. J. (1995). Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Applied and Environmental Microbiology, 61(8), 2873–2878. https://doi.org/10.1128/aem.61.8.2873-2878.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sánchez, S., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Ávalos, M., & Guzmán-Trampe, S. (2010). Carbon Source Regulation of Antibiotic Production, 63(8), 442–459. https://doi.org/10.1038/ja.2010.78

    Article  CAS  Google Scholar 

  103. Sánchez, B., Bressollier, P., & Urdaci, M. C. (2008). Exported proteins in probiotic bacteria: Adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunology and Medical Microbiology, 54(1), 1–17. https://doi.org/10.1111/j.1574-695X.2008.00454.x

    Article  CAS  PubMed  Google Scholar 

  104. Sarkar, T., Chetia, M., & Chatterjee, S. (2021). Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond. Frontiers in Chemistry, 9, 691532. https://doi.org/10.3389/fchem.2021.691532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Savadogo, A., Ouattara, C. A. T., Bassole, I. H. N., & Traore, S. A. (2006). Bacteriocins and lactic acid bacteria - A minireview. African Journal of Biotechnology, 5(9), 678–684. https://doi.org/10.5897/AJB05.388

    Article  CAS  Google Scholar 

  106. Sawa, N., Wilaipun, P., Kinoshita, S., Zendo, T., Leelawatcharamas, V., Nakayama, J., & Sonomoto, K. (2011). Isolation and Characterization of Enterocin W, a Novel Two-Peptide Lantibiotic Produced by Enterococcus faecalis {NKR}-4-1. Applied and Environmental Microbiology, 78(3), 900–903. https://doi.org/10.1128/aem.06497-11

    Article  PubMed  Google Scholar 

  107. Schöbitz, R. P., Bórquez, P. A., Costa, M. E., Ciampi, L. R., & Brito, C. S. (2006). Bacteriocin like substance production by Carnobacterium piscicola in a continuous system with three culture broths. Study of antagonism against Listeria monocytogenes on vacuum packaged salmon. Brazilian Journal of Microbiology, 37(1), 52–57. https://doi.org/10.1590/s1517-83822006000100010

    Article  Google Scholar 

  108. Silkin, L., Hamza, S., Kaufman, S., Cobb, S. L., & Vederas, J. C. (2008). Spermicidal bacteriocins: Lacticin 3147 and subtilosin A. Bioorganic & Medicinal Chemistry Letters, 18(10), 3103–3106. https://doi.org/10.1016/j.bmcl.2007.11.024

    Article  CAS  Google Scholar 

  109. Sivaraj, A., Sundar, R., Manikkam, R., Parthasarathy, K., Rani, U., & Kumar, V. (2018). Potential applications of lactic acid bacteria and bacteriocins in anti-mycobacterial therapy. Asian Pacific Journal of Tropical Medicine, 11(8), 453–459. https://doi.org/10.4103/1995-7645.240080

    Article  CAS  Google Scholar 

  110. Skarp, C. P. A., Hänninen, M.-L., & Rautelin, H. I. K. (2016). Campylobacteriosis: The role of poultry meat. Clinical Microbiology and Infection, 22(2), 103–109. https://doi.org/10.1016/j.cmi.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  111. Smith, M. K., Draper, L. A., Hazelhoff, P.-J., Cotter, P. D., Ross, R. P., & Hill, C. (2016). A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes.Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01939

  112. Sosunov, V., Mischenko, V., Eruslanov, B., Svetoch, E., Shakina, Y., Stern, N., Majorov, K., Sorokoumova, G., Selishcheva, A., & Apt, A. (2007). Antimycobacterial activity of bacteriocins and their complexes with liposomes. Journal of Antimicrobial Chemotherapy, 59(5), 919–925. https://doi.org/10.1093/jac/dkm053

    Article  CAS  PubMed  Google Scholar 

  113. Spelhaug, S. U. E. R., & Harlander, S. K. (1989). Inhibition of Foodborne Bacterial Pathogens by Bacteriocins from Lactococcus lactis and Pediococcus pentosaceous1. Journal of Food Protection, 52(12), 856–862. https://doi.org/10.4315/0362-028x-52.12.856

    Article  PubMed  Google Scholar 

  114. Stiles, M. E. (1994). Bacteriocins Produced by Leuconostoc Species. Journal of Dairy Science, 77(9), 2718–2724. https://doi.org/10.3168/jds.S0022-0302(94)77214-3

    Article  CAS  PubMed  Google Scholar 

  115. Suárez-Méndez, R., García-García, I., Fernández-Olivera, N., Valdés-Quintana, M., Milanés-Virelles, M. T., Carbonell, D., Machado-Molina, D., Valenzuela-Silva, C. M., & López-Saura, P. A. (2004). Adjuvant interferon gamma in patients with drug {\textendash} resistant pulmonary tuberculosis: a pilot study. {BMC} Infectious Diseases, 4(1). https://doi.org/10.1186/1471-2334-4-44

  116. Suárez, A. M., Azcona, J. I., Rodríguez, J. M., Sanz, B., & Hernández, P. E. (1997). One-step purification of nisin A by immunoaffinity chromatography. Applied and Environmental Microbiology, 63(12), 4990–4992. https://doi.org/10.1128/aem.63.12.4990-4992.1997

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tiwari, S. K., Dicks, L. M. T., Popov, I. V, Karaseva, A., Ermakov, A. M., Suvorov, A., Tagg, J. R., Weeks, R., & Chikindas, M. L. (2020). Probiotics at War Against Viruses: What Is Missing From the Picture? Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01877

  118. Todorov, S. D. (2009). Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action: Produção, organização genética e modo de ação. Brazilian Journal of Microbiology, 40(2), 209–221. https://doi.org/10.1590/s1517-83822009000200001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Todorov, S. D., Wachsman, M. B., Knoetze, H., Meincken, M., & Dicks, L. M. T. (2005). An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. International Journal of Antimicrobial Agents, 25(6), 508–513. https://doi.org/10.1016/j.ijantimicag.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  120. Todorov, S. D., Wachsman, M., Tomé, E., Dousset, X., Destro, M. T., Dicks, L. M. T., de Melo Franco, B. D. G., Vaz-Velho, M., & Drider, D. (2010). Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiology, 27(7), 869–879. https://doi.org/10.1016/j.fm.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  121. Todorov, S. D., Kang, H.-J., Ivanova, I. V., & Holzapfel, W. H. (2020). Bacteriocins From LAB and Other Alternative Approaches for the Control of Clostridium and Clostridiodes Related Gastrointestinal Colitis. Frontiers in Bioengineering and Biotechnology, 8, 581778. https://doi.org/10.3389/fbioe.2020.581778

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tong, Z., Zhang, L., Ling, J., Jian, Y., Huang, L., & Deng, D. (2014). An In Vitro Study on the Effect of Free Amino Acids Alone or in Combination with Nisin on Biofilms as well as on Planktonic Bacteria of Streptococcus mutans. PLoS One, 9(6), e99513. https://doi.org/10.1371/journal.pone.0099513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. van Heel, A. J., de Jong, A., Montalbán-López, M., Kok, J., & Kuipers, O. P. (2013). {BAGEL}3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Research, 41(W1), W448–W453. https://doi.org/10.1093/nar/gkt391

    Article  PubMed  PubMed Central  Google Scholar 

  124. Venema, K., Chikindas, M. L., Seegers, J., Haandrikman, A. J., Leenhouts, K. J., Venema, G., & Kok, J. (1997). Rapid and Efficient Purification Method for Small, Hydrophobic, Cationic Bacteriocins: Purification of Lactococcin B and Pediocin {PA}-1. Applied and Environmental Microbiology, 63(1), 305–309. https://doi.org/10.1128/aem.63.1.305-309.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vijay, K. J., John, N. (2002). Control of Foodborne microorganisms. In Eastern Hemisphere Distribution (p. 306).

  126. Wachsman, M. B., Castilla, V., Holgado, APd. R., Torres, RAd., Sesma, F., & Coto, C. E. (2003). Enterocin {CRL}35 inhibits late stages of {HSV}-1 and {HSV}-2 replication in vitro. Antiviral Research, 58(1), 17–24. https://doi.org/10.1016/s0166-3542(02)00099-2

    Article  CAS  PubMed  Google Scholar 

  127. Wachsman, M. Ó. B., Farías, M. E., Takeda, E., Sesma, F., De Ruiz Holgado, A. P., De Torres, R. A., & Coto, C. E. (1999). Antiviral activity of enterocin CRL35 against herpesviruses. International Journal of Antimicrobial Agents, 12(4), 293–299. https://doi.org/10.1016/S0924-8579(99)00078-3

    Article  CAS  PubMed  Google Scholar 

  128. Wang, Y., Qin, Y., Xie, Q., Zhang, Y., Hu, J., & Li, P. (2018). Purification and Characterization of Plantaricin LPL-1, a Novel Class IIa Bacteriocin Produced by Lactobacillus plantarum LPL-1 Isolated From Fermented Fish. Frontiers in Microbiology, 9, 2276. https://doi.org/10.3389/fmicb.2018.02276

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wannun, P., Piwat, S., & Teanpaisan, R. (2014). Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei {SD}1. Anaerobe, 27, 17–21. https://doi.org/10.1016/j.anaerobe.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  130. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, R., Johnson, M. C., & Ray, B. (1992). Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Applied and Environmental Microbiology, 58(10), 3355–3359. https://doi.org/10.1128/aem.58.10.3355-3359.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yoneyama, F., Imura, Y., Ohno, K., Zendo, T., Nakayama, J., Matsuzaki, K., & Sonomoto, K. (2009). Peptide-Lipid Huge Toroidal Pore, a New Antimicrobial Mechanism Mediated by a Lactococcal Bacteriocin Lacticin Q. Antimicrobial Agents and Chemotherapy, 53(8), 3211–3217. https://doi.org/10.1128/aac.00209-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia, 2, 50–56. https://doi.org/10.1016/j.apcbee.2012.06.010

    Article  CAS  Google Scholar 

  134. Zacharof, M. P., Lovitt, R. W., Cleveland, J., Montville, T. J., Nes, I. F., Chikindas, M. L., Perin, L. M., B, E. S., Balciunas, E. M., Castillo Martinez, F. A., Todorov, S. D., de Franco, B. D. G. M., Converti, A., & de Oliveira, R. P. A. (2011). Caracterização De Fatores Interferentes Na Produção De Bacteriocinas Por Bactérias Ácido Láticas Isoladas De Leite Cru E Queijo. International Journal of Food Microbiology, 2(1), 90. https://doi.org/10.1016/j.foodcont.2012.11.025

    Article  CAS  Google Scholar 

  135. Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X., & Ai, L. (2018). Purification and Partial Characterization of Bacteriocin Lac-B23, a Novel Bacteriocin Production by Lactobacillus plantarum J23, Isolated From Chinese Traditional Fermented Milk. Frontiers in Microbiology, 9, 2165. https://doi.org/10.3389/fmicb.2018.02165

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhou, L., van Heel, A. J., Montalban-Lopez, M., & Kuipers, O. P. (2016). Potentiating the Activity of Nisin against Escherichia coli.Frontiers in Cell and Developmental Biology, 4. https://doi.org/10.3389/fcell.2016.00007

  137. Zielińska, D., Kolozyn-Krajewska, D., & Laranjo, M. (2018). Food-Origin Lactic Acid Bacteria May Exhibit Probiotic Properties: Review. BioMed Research International, 2018. https://doi.org/10.1155/2018/5063185

  138. Zoumpopoulou, G., Pepelassi, E., Papaioannou, W., Georgalaki, M., Maragkoudakis, P., Tarantilis, P., Polissiou, M., Tsakalidou, E., & Papadimitriou, K. (2013). Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens. International Journal of Molecular Sciences, 14(3), 4640–4654. https://doi.org/10.3390/ijms14034640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Anoop Kumar Yadav for proofreading the manuscript and providing intellectual inputs. Scientific illustrations were Created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

The idea of the project and the design of the work are conceived and supervised by Renitta Jobby along with supervising the interpretation of the findings, and manuscript writing. Abigail Fernandes carried out the literature search and wrote the manuscript with support from Renitta Jobby. Abigail Fernandes took the lead in writing and editing the manuscript. All authors provided critical feedback and helped shape the manuscript.

Corresponding author

Correspondence to Renitta Jobby.

Ethics declarations

Ethics approval

Not applicable. This review does not include any human or animal studies.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance and impact

Bacteriocins have long been investigated for food packaging.

They can be used to overcome antibiotic resistance.

Bioengineered bacteriocins reduce the risk of rejection and associated side effects when administered as adjuvants.

LAB bacteriocins can be used as next-generation therapeutics.

This review provides a rationale to investigate the potential of LAB bacteriocins to overcome antibiotic overuse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, A., Jobby, R. Bacteriocins from lactic acid bacteria and their potential clinical applications. Appl Biochem Biotechnol 194, 4377–4399 (2022). https://doi.org/10.1007/s12010-022-03870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03870-3

Keywords

Navigation