Skip to main content
Log in

Two-in-One Surfactant Disinfectant Potential of Xylitol Dicaprylate and Dilaurate Esters Synthesized by Talaromyces thermophilus galactolipase for Cleaning Industries

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Talaromyces thermophilus galactolipase (TTL) was found to produce alcohol sugar fatty acid diesters. The modulation of the solvent composition was used for the esterification reaction screening of diesters from xylitol and various fatty acids using the immobilized Talaromyces thermophilus galactolipase. The reactions were assessed by LC–MS analysis. The antimicrobial activity assay showed that both xylitol dicaprylate and xylitol dilaurate esters had more ability to inhibit the growth of several bacteria involved in surface contamination in the food industry. The xylitol dilaurate ester has the highest activity against Gram-positive strains with the lowest MIC values of 0.0016 and 0.005 mg mL−1 against Bacillus licheniformis and Staphylococcus aureus, respectively. Xylitol dicaprylate ester is more active against Gram-negative ones with significantly low MIC values of 0.25 and 0.4 mg mL−1 against Escherichia coli and Pseudomonas aeruginosa, respectively. The highest antifungal activity of the xylitol dicaprylate ester has been also proven, with a MIC value of 0.02 mg mL−1 against Penicillium occitanis and Fusarium solani. A better reduction in critical micelle concentrations and air–water surface tension were observed with these diesters compared to their corresponding monoesters in addition to their efficient emulsifying properties. The stability of these diesters in a liquid detergent formula after one year of storage was tested by a positive oil spreading assay and a retained antimicrobial activity. They exhibit a typical surfactant behavior with a two-in-one effect that can act as a detergent and a disinfectant with potential use in different cleaning processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Matsumura, S., Imai, K., Yoshikawa, S., Kawada, K., & Uchiborr, T. (1990). Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. Journal of the American Oil Chemists’ Society, 67, 996–1001.

    Article  CAS  Google Scholar 

  2. López-Prieto, A., Vecino, X., Rodríguez-López, L., Moldes, A. B., & Cruz, J. M. (2019). A multifunctional biosurfactant extract obtained from corn steep water as bactericide for agrifood industry. Foods, 8, 410.

    Article  PubMed Central  CAS  Google Scholar 

  3. Chang, S. W., & Shaw, J. F. (2009). Biocatalysis for the production of carbohydrate esters. New Biotechnology, 341, 109–116.

    Article  CAS  Google Scholar 

  4. Ferrer, M., Soliveri, J., Plou, F. J., Lopez-Cortes, N., Reyes-Duarte, D., Christensen, M., Copa-Patino, J. L., & Ballesteros, A. (2005). Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme and Microbial Technology, 36, 391–398.

    Article  CAS  Google Scholar 

  5. Hathcox, A. K., & Beuchat, L. R. (1996). Inhibitory effects of sucrose fatty acid esters, alone and in combination with ethylenediaminetetra-acetic acid and other organic acidson viability of Escherichia coli O157:H7. Food Microbiology, 13, 213–225.

    Article  CAS  Google Scholar 

  6. Devulapalle, K. S., Gomez de Segura, A., Ferrer, M., Alcalde, M., Mooser, G., & Plou, F. J. (2004). Effect of fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity. Carbohydrate Research, 33, 1029–1034.

    Article  CAS  Google Scholar 

  7. Amaral, L. F., Camilo, N. S., Pereda, M. D., Levy, C. E., Moriel, P., & Mazzola, P. G. (2011). Evaluation of antimicrobial effectiveness of C-8 xylitol monoester as an alternative preservative for cosmetic products. International Journal of Cosmetic Science, 33, 391–397.

    Article  CAS  PubMed  Google Scholar 

  8. Fernández, A., Scorzza, C., Usubillaga, A., & Salager, J. L. (2005). Synthesis of new extended surfactants containing a xylitol polar group. Journal of Surfactants and Detergents, 8, 193–198.

    Article  Google Scholar 

  9. Cramer, J. F., Dueholm, M. S., Nielsen, S. B., Pedersen, D. S., Wimmer, R., & Pedersen, L. H. (2007). Controlling the degree of esterification in lipase catalysed synthesis of xylitol fatty acid esters. Enyzme and Microbial Technology, 41, 346–352.

    Article  CAS  Google Scholar 

  10. Silveira, J. E. P. S., Pereda, M. C. V., Nogueira, C., Dieamant, G., Cesar, C. K. M., Assanome, K. M., Silva, M. S., Torello, C. O., Queiroz, M. L. S., & Eberlin, S. (2016). Preliminary safety assessment of C–8 xylitol monoester and xylitol phosphate esters. International Journal of Cosmetic Science, 38, 41–51.

    Article  CAS  PubMed  Google Scholar 

  11. Tabisz, Ł, Piotrowicz, Z., Dąbrowska, M., Dobrowolska, A., Czaczyk, K., Nowak, I., & Łęska, B. (2021). Sweet surfactants I: Fatty acid esters of sucralose. Food Chemistry, 358, 129827.

    Article  CAS  PubMed  Google Scholar 

  12. Gary Puterka, J., Farone, W., Palmer, T., & Barrington, A. (2003). Structure-function relationships affecting the insecticidal and matricidal activity of sugar esters. Journal of Economic Entomology, 96, 636–644.

    Article  PubMed  Google Scholar 

  13. Boudabbous, M., Ben Ameur, R., Belhaj, I., Cheffi, M., Belghith, H., Allouche, N., Chamkha, M., & Gargouri, A. (2020). A novel sec-butyl-β-d-cellobioside and sec-butyl-β-d-glucoside biosynthesized by immobilized β-glucosidase of Fusarium solani with surfactant properties. Applied Catalysis A: General, 602, 117713.

    Article  CAS  Google Scholar 

  14. Patel, M. (2003). Surfactants based on renewable raw materials. Journal of Industrial Ecology, 7, 747–762.

    Google Scholar 

  15. Yin, H., & Zhejiang, J. J. (2005). Interaction of nonionic surfactant AEO9 with ionicsurfactants. Journal of Zhejiang University Science B, 65, 97–601.

    Google Scholar 

  16. Jin, L., Garamus, V. M., Liu, F., Xiao, J., Eckerlebe, H., Willumeit-Römer, R., Mu, B., & Zou, A. (2016). Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution. Journal of Colloid and Interface Science, 481, 201–219.

    Article  CAS  PubMed  Google Scholar 

  17. Moldes, A. B., Rodríguez-López, L., Rincón-Fontán, M., López-Prieto, A., Vecino, X. J., & Cruz, M. (2021). Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: An overview. International Journal of Molecular Sciences, 22, 2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis, B. G., & Boyer, V. (2001). Biocatalysis and enzymes in organic synthesis. Natural Products Reports, 18, 618–640.

    Article  CAS  Google Scholar 

  19. Cauglia, F., & Canepa, P. (2008). The enzymatic synthesis of glucosylmyristate as a reaction model for general considerations on ‘sugar esters’ production. Bioresource Technology, 99, 4065–4072.

    Article  CAS  PubMed  Google Scholar 

  20. Castillo, E., Pezzotti, F., Navarro, A., & Lopez-Munguia, A. (2003). Lipase-catalyzed synthesis of xylitol monoesters: Solvent engineering approach. Journal of Biotechnology, 102, 251–259.

    Article  CAS  PubMed  Google Scholar 

  21. Belhaj-Ben Romdhane, I., Fendri, A., Gargouri, Y., Gargouri, A., & Belghith, H. (2010). A novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents. Biochemical Engineering Journal, 53, 112–120.

    Article  CAS  Google Scholar 

  22. Belhaj, I., Amara, S., Parsiegla, G., Sutto-Ortiz, P., Sahaka, M., Belghith, H., Rousset, A., Lafontd, D., & Carrière, F. (2018). Galactolipase activity of Talaromyces thermophilus lipase on galactolipidmicelles, monomolecular films and UV-absorbingsurface-coated substrate. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1863, 1006–1015.

    Article  CAS  Google Scholar 

  23. Jallouli, R., Khrouf, F., Fendri, A., Mechichi, T., Gargouri, Y., & Bezzine, S. (2012). Purification and biochemical characterization of a novel alkaline (phospho) lipase from a newly isolated Fusarium solani strain. Applied Biochemistry and Biotechnology, 168, 2330–2343.

    Article  CAS  PubMed  Google Scholar 

  24. Belhaj-Ben Romdhane, I., Ben Romdhane, Z., Gargouri, A., & Belghith, H. (2011). Esterification activity and stability of Talaromyces thermophilus lipase immobilized onto chitosan. Journal of Molecular Catalysis. B, Enzymatic, 68, 230–239.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  26. Tiss, A., Carriere, F., & Verger, R. (2001). Effects of gum arabic on lipase interfacial binding and activity. Analytical Biochemistry, 294, 36–43.

    Article  CAS  PubMed  Google Scholar 

  27. Heatley, N. G. (1944). A method for the assay of penicillin. The Biochemical Journal, 38, 61–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benkova, M., Soukup, O., & Marek, J. (2020). Antimicrobial susceptibility testing: Currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology, 129, 806–822.

    Article  CAS  PubMed  Google Scholar 

  29. Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulose. Biotechnology and Bioengineering Symposium, 6, 21–34.

    CAS  Google Scholar 

  30. Balouiri, M., Sadiki, M., & Koraichi, S. I. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6, 71–79.

    Article  PubMed  Google Scholar 

  31. Rudilla, H., Merlos, A., & Sans-Serramitjana, E. (2018). Ester Fuste, Josep M. Sierra, Antonio Zalacain, Teresa Vinuesa and Miguel Vinas. New and old tools to evaluate new antimicrobial peptides 1. AIMS Microbiology, 3, 522–540.

    Article  CAS  Google Scholar 

  32. Kim, S., Lim, E., Lee, S., Lee, J., & Lee, T. (2000). Purification and characterization of biosurfactant-producing Bacillus species. Biotechnology and Applied Biochemistry, 31, 249–253.

    Article  PubMed  Google Scholar 

  33. Zhang, X., Song, F., Taxipalati, M., Wei, W., & Feng, F. (2014). Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters. PLoS ONE, 9, 12.

    Google Scholar 

  34. Pornsunthorntawee, O., Wongpanit, P., Chavadej, S., Abe, M., & Rujiravanit, R. (2008). Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource Technology, 99, 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  35. Sarney, D. B., Barnard, M. J., MacManus, D. A., & Vulfson, E. N. (1996). Application of lipases to the regioselective synthesis of sucrose fatty acid monoesters. Journal of the American Oil Chemists Society, 73, 1481–1487.

    Article  CAS  Google Scholar 

  36. Ferreira, C. M. L., Oveimar, B., Dos Santos, J. C. S., Rodrigues, R. C., Berenguer-Murcia, A., Briand, L. E., & Fernandez-Lafuente, R. (2021). Reactive crystallization: A review. Reaction Chemistry & Engineering 3.

  37. Nilsson, E. J., Lind, T. K., Scherer, D., Skansberger, T., Mortensen, K., Engblom, J., & Kocherbitov, V. (2020). Mechanisms of crystallisation in polysorbates and sorbitan esters. CrystEngComm, 22, 3840–3853.

    Article  CAS  Google Scholar 

  38. Plou, F. J., Cruces, M. A., Ferrer, M., Fuentes, G., Pastor, E., Bernabe, M., Christensen, M., Comelles, F., Parra, J. L., & Ballesteros, A. (2002). Enzymatic acylation of di- and trisaccharides with fatty acids: Choosing the appropriate enzyme, support and solvent. Journal of Biotechnology, 96, 55–66.

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi, T. (2011). Lipase-catalyzed syntheses of sugar esters in non-aqueous media. Biotechnology Letters, 33, 1911–1919.

    Article  CAS  PubMed  Google Scholar 

  40. Cho, J. E., Sim, D. S., Kim, Y., Lim, J., Jeong, N. H., & Kang, H. C. (2018). Selective syntheses and properties of anionic surfactants derived from isosorbide. Journal of Surfactants and Detergents, 21, 817–826.

    Article  CAS  Google Scholar 

  41. Bellot, J. C., Choisnard, L., Castillo, E., & Marty, A. (2001). Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification. Enyzme and Microbial Technology, 28, 362–369.

    Article  CAS  Google Scholar 

  42. Walsh, M. K., Bombyk, R. A., Wagh, A., Bingham, A., & Berreau, L. (2009). Synthesis of lactose monolaurate as influenced by various lipases and solvents. Journal of Molecular Catalysis. B, Enzymatic, 60, 171–177.

    Article  CAS  Google Scholar 

  43. Soultani, S., Engasser, J. M., & Ghoul, M. (2001). Effect of acyl donor chain length and sugar/acyl donor molar ratio on enzymatic synthesis of fatty acid fructose esters. Journal of Molecular Catalysis. B, Enzymatic, 11, 725–773.

    Article  CAS  Google Scholar 

  44. Nobmann, P., Smith, A., Dunne, J., Henehan, G., & Bourke, P. (2009). The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria sp. and food spoilage microorganisms. International Journal of Food Microbiology, 128, 440–445.

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y. K., Zhang, S. F., Wang, Q. H., & Yang, Z. J. (2004). Synthesis and surface properties of acyl glycine surfactants derived from vegetable oils. Tenside Surfactants Detergents., 53, 284–290.

    Google Scholar 

  46. De Block, M. S. J., De Jonghe, V., Coorevits, A., Heyndrickx, M., & Herman, L. (2012). Biofilm formation in milk production and processing environments: Influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11, 133–147.

    Article  CAS  Google Scholar 

  47. Neira, C., Laca, A., Laca, A., & Díaz, M. (2017). Microbial diversity on commercial eggs as affected by the production system: A first approach using PGM. International Journal of Food Microbiology, 262, 3–7.

    Article  PubMed  Google Scholar 

  48. Møretrø, T., & Langsrud, S. (2017). Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Comprehensive Reviews in Food Science and Food Safety, 16, 1022–1041.

    Article  PubMed  CAS  Google Scholar 

  49. Maes, S., Heyndrickx, M., Vackier, T., Steenackers, H., Verplaetse, A., & De Reu, K. (2019). Identification and spoilage potential of the remaining dominant microbiota on food contact surfaces after cleaning and disinfection in different food industries. Journal of Food Protection, 82, 262–275.

    Article  CAS  PubMed  Google Scholar 

  50. Ruzicka, J., Velclova, K., Janis, R., & Krejci, J. (2003). Antimicrobial effects of 1-monoacylglycerols prepared by catalytic reaction of glycidol with fatty acids. European Food Research and Technology, 217, 329–331.

    Article  CAS  Google Scholar 

  51. Nair, M. K. M., Joy, J., Vasudevan, P., Hinckley, L., Hoagland, T. A., & Venkitanarayanan, K. S. (2005). Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. International Journal of Dairy Science, 883, 488–3495.

    Google Scholar 

  52. Wuyts, J., Van Dijck, P., & Holtappels, M. (2018). Fungal persister cells: The basis for recalcitrant infections? PLOS Pathogens, 14, 10.

    Article  CAS  Google Scholar 

  53. Kaldalu, N., Hauryliuk, V., Turnbull, K. J., La Mensa, A., Putrinš, M., & Tenson, T. (2020). In vitro studies of persister cells. Microbiology and Molecular Biology Reviews, 84, 4.

    Article  Google Scholar 

  54. Bamford, R. A., Smith, A., Metz, J., Glover, G., Titball, R. W., & Pagliara, S. (2017). Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biology, 15, 121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jedd, G. (2011). Fungal evo-devo: Organelles and multicellular complexity. Trends in Cell Biology, 21, 12–19.

    Article  CAS  PubMed  Google Scholar 

  56. Hernández-Oñate, M. A., & Herrera-Estrella, A. (2015). Damage response involves mechanisms conserved across plants, animals and fungi. Current Genetics, 61, 359–372.

    Article  PubMed  CAS  Google Scholar 

  57. Riquelme M., Aguirre, J., Bartnicki-García, S., Braus, G. H., Feldbrügge, M., Fleig, U., Hansberg, W., Herrera-Estrella, A., Kämper, J., Kück, U., Mouriño-Pérez, R. R., Takeshita, N., Fischerg. R. (2018). Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiology and Molecular Biology Reviews 82.

  58. Kabara, J. J., Marshall, D. L., Davidson, P. M., Sofos, J. N., Branen, A. L. (2005) In P. M. Davidson, J. N. Sofos, A. L. Branen (Eds.), Antimicrobials in food (pp. 327–361). CRC Press.

  59. Chen, X., Iqbal, N., & Boden, G. (1999). The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. The Journal of Clinical Investigation, 103, 365–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, S., Lee, J., Yu, H., & Lim, J. (2016). Synthesis of environment friendly nonionic surfactants from sugar base and characterization of interfacial properties for detergent application. Industrial and Engineering Chemistry, 38, 157–166.

    Article  CAS  Google Scholar 

  61. Zhang, X., Wei, W., Cao, X., & Feng, F. (2015). Characterization of enzymatically prepared sugar medium-chain fatty acid monoesters. Journal of the Science of Food and Agriculture, 95, 1631–1637.

    Article  CAS  PubMed  Google Scholar 

  62. Gaudin, T., Lu, H., Fayet, G., Berthauld-Drelich, A., Rotureau, P., Pourceau, G., Wadouachi, A., Van Hecke, E., Nesterenko, A., & Pezron, I. (2019). Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: A literature overview. Advances in Colloid and Interface Science, 270, 87–100.

    Article  CAS  PubMed  Google Scholar 

  63. Akoh, C. C. (1992). Emulsification properties of polyesters and sucrose ester blends I: Carbohydrate fatty acid polyesters. Journal of the American Oil Chemists Society, 69, 9–13.

    Article  CAS  Google Scholar 

  64. Markande, A. R., Patel, D., & Varjani, S. (2021). A review on biosurfactants: Properties, applications and current developments. Bioresource Technology, 330, 124963.

    Article  CAS  PubMed  Google Scholar 

  65. Kelkar, D. S., Kumar, A. R., & Zinjarde, S. S. (2007). Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester. Bioresource Technology, 98, 1505–1508.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Miss Lobna Jlaiel for her technical assistance during LC-MS experiments.

Funding

This work was supported financially by “Ministry of Higher Education and Scientific Research of Tunisia” through a grant to Laboratory of Eukaryotes Molecular Biotechnology, Centre of Biotechnology of Sfax, University of Sfax, TUNISIA. Part of this research work is carried out under the MOBIDOC project funded by the European Union under the PASRI program and administered by the ANPR.

Author information

Authors and Affiliations

Authors

Contributions

R. Ben Ayed re-performed the synthesis reactions and antimicrobial activity experiments, and contributed to the surface properties measurements. M. Bouzid performed the synthesis reactions and the antimicrobial activity experiments. R. Zbidi discussed the diesters incorporation in detergent formula experiment. M. Aouioua provided the materials for the diesters incorporation in detergent formula. A. Gargouri discussed the results and revised the manuscript. H. Belghith validated the results and revised the manuscript. I. Belhaj contributed to the central idea, analyzed most of the data, and supervised and wrote the initial draft and revised paper.

Corresponding author

Correspondence to Inès Belhaj.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Ayed, R., Bouzid, M., Zbidi, R. et al. Two-in-One Surfactant Disinfectant Potential of Xylitol Dicaprylate and Dilaurate Esters Synthesized by Talaromyces thermophilus galactolipase for Cleaning Industries. Appl Biochem Biotechnol 194, 2700–2719 (2022). https://doi.org/10.1007/s12010-022-03864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03864-1

Keywords

Navigation