Skip to main content

Advertisement

Log in

Poly-cis-isoprene Degradation by Nocardia sp. BSTN01 Isolated from Industrial Waste

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The natural and synthetic rubber (NR and SR) products are made up of poly-cis-isoprene which are estimated as one of the major solid-wastes and need to be cleared through bacterial bioremediation. The present research reports isolation and characterization of a gram-positive, non-spore forming, filamentous actinomycete Nocardia sp. BSTN01 from the waste of a rubber processing industry. We found NR- and SR-dependent growth of BSTN01 over a period of time. BSTN01 has been found to degrade NR by 55.3% and SR by 45.9% in 6 weeks. We have found an increase in the total protein of BSTN01 cells up to 623.6 and 573.9 µg/ml for NR and SR, respectively, after 6 weeks of growth in rubber-supplemented MSM medium. Scanning electron microscopy revealed adhesive growth of BSTN01 on the surface of NR and SR. Formation of aldehyde groups due to the degradation was indicated by Schiff’s test and confirmed by FTIR-ATR analysis. The genome sequence of BSTN01 revealed the gene responsible for rubber degradation. The presence of lcp gene and structural analysis of the latex clearing protein further confirmed the reliability. Studies on quantification of rubber degradation capability by the isolated strain prove it to be an efficient degrader of NR and SR. This study revealed the genome sequence and structural analysis of the proteins responsible for degradation of rubber. A new fast-growing Nocardia strain can degrade both NR and SR with higher efficiency and have future potential for rubber solid-waste management either alone or in consortia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Mooibroek, H., & Cornish, K. (2000). Alternative sources of natural rubber. Applied Microbiology and Biotechnology, 53, 355–365.

    Article  CAS  Google Scholar 

  2. Luo, Q., Hiessl, S., Poehlein, A., Daniel, R., & Steinbuchel, A. (2014). Insights into the microbial degradation of rubber and gutta-percha by analysis of the complete genome of Nocardia nova SH22a. Applied and Environmental Microbiology, 80(13), 3895–3907.

    Article  Google Scholar 

  3. Natural Rubber Trends Statistics (2020). Association of Natural Rubber Producing Countries. http://www.anrpc.org/html/news-secretariat-details.aspx?ID=9&PID=39&NID=4668

  4. Monthly Rubber Statistical News (2019) The year 2018–19. Statistics & Planning Department Rubber Board, Kottayam-686 002.Kerala, India. Vol. 77. No. 12. http://www.anrpc.org/html/news-secretariatdetails.aspx?ID=9&PID=39&NID=2471

  5. Linos, A. & Steinbüchel, A., (2005). Biodegradation of natural and synthetic rubbers, in: Biopolymers Online. https://doi.org/10.1002/3527600035.bpol2010

  6. Tsuchii, A., & Tokiwa, Y. (2001). Microbial degradation of tire rubber particles. Biotechnology Letters, 23, 963–969.

    Article  CAS  Google Scholar 

  7. Zabaniotou, A. A., & Stavropoulos, G. (2003). Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70(2), 711–722. https://doi.org/10.1016/S0165-2370(03)00042-1

    Article  CAS  Google Scholar 

  8. Luch, A. (2005) The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London, ISBN: 9781860944178, Pages: 489

  9. Air Resources Board, (2005) Report on air emissions from waste tire burning in California. California Environmental Protection Agency, July 1, 2005. http://www.arb.ca.gov/ei/tire/2005_tire_burning_report.pdf.

  10. Asthana, S. R., & Patil, R. K. (2006). Use of alternative fuels in Indian cement industry. Advances in Energy Research, 1, 347–350.

    Google Scholar 

  11. Hassanien, M. A. (2007). Risk assessment of atmospheric toxic pollutants over Cairo. Egypt. Cairo University Journal of Environmental Science, 5, 37–57.

    Google Scholar 

  12. Haines, G., McCulloch, M. & Wong, R. (2010). End-of-life tire management LCA: A comparative analysis for Alberta recycling management authority. The Pembina Institute. http://www.albertarecycling.ca/docs/about-us/lifecycle-assessment-final-report---tires.pdf?Status=Temp&sfvrsn=2

  13. Ziadat, A. H., & Sood, E. (2014). An environmental impact assessment of the open burning of scrap tires. Journal of Applied Science, 14, 2695–2703.

    Article  CAS  Google Scholar 

  14. Nayanashree, G., & Thippeswamy, B. (2015). Biodegradation of natural rubber by laccase and manganese peroxidase enzyme of Bacillus subtilis. Environ Process. https://doi.org/10.1007/s40710-015-0118-y

    Article  Google Scholar 

  15. Sarkar, B. & Mandal, S. (2020) Microbial degradation of natural and synthetic rubbers. In: Shah M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_21

  16. Heisey, R. M., & Papadatos, S. (1995). Isolation of microorganisms able to metabolize purified natural rubber. Applied and Environmental Microbiology, 61(8), 3092–3097. https://doi.org/10.1128/AEM.61.8.3092-3097.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallert, C. (2000). Degradation of latex and of natural rubber by Streptomyces strain La 7. Systematic and Applied Microbiology, 23(3), 433–441. https://doi.org/10.1016/S0723-2020(00)80075-2

    Article  CAS  PubMed  Google Scholar 

  18. Linos, A., Berekaa, M. M., Reichelt, R., Keller, U., Schmitt, J., Flemming, H. C., Kroppenstedt, R. M., & Steinbüchel, A. (2000). Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: Microbial strategies and detailed surface analysis. Applied and Environmental Microbiology, 66(4), 1639–1645. https://doi.org/10.1128/aem.66.4.1639-1645.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ibrahim, E. M., Arenskötter, M., Luftmann, H., & Steinbüchel, A. (2006). Identification of poly(cis-1,4-Isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1. Applied and Environmental Microbiology, 72(5), 3375–3382. https://doi.org/10.1128/AEM.72.5.3375-3382.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watcharakul, S., Umsakul, K., Hodgson, B., Chumeka, W. & Tanrattanakul, V. (2012) Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolorCH13. Electronic Journal Biotechnology, 15(1). https://doi.org/10.2225/vol15-issue1-fulltext-10

  21. Onyeagoro, G. N., Ohaeri, E., & Timothy, U. J. (2012). Studies on microbial degradation of natural rubber using dilute solution viscosity measurement and weight loss techniques. International Journal of Basic and Applied Science, 1(2), 448–460.

    Article  Google Scholar 

  22. Adzami, N. S., & Tajarudin, H. A. (2018). Biodegradation of natural rubber latex film added with metroxylansagupith form by Bacillus cereus ATCC 14579. Malay Journal of Microbiology, 14, 101–107.

    Google Scholar 

  23. Nawong, C., Umsakul, K., & Sermwittayawong, N. (2018). Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil. Brazilian Journal of Microbiology, 49(3), 481–488. https://doi.org/10.1016/j.bjm.2017.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kasai, D. (2020). Poly(cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria. Bioscience Biotechnology and Biochemistry, 84, 1089–1097. https://doi.org/10.1080/09168451.2020.1733927

    Article  CAS  PubMed  Google Scholar 

  25. Jendrossek, D., Tomasi, G., & Kroppenstedt, R. M. (1997). Bacterial degradation of natural rubber: A privilege of actinomycetes? FEMS Microbiology Letters, 150, 179–188.

    Article  CAS  Google Scholar 

  26. Basik, A. A., Sanglier, J. J., Yeo, C. T., & Sudesh, K. (2021). Microbial degradation of rubber: Actinobacteria. Polymers, 13(12), 1989. https://doi.org/10.3390/polym13121989

    Article  CAS  PubMed  Google Scholar 

  27. Le, T. N., Mikolasch, A., Awe, S., Sheikhany, H., Klenk, H. P., & Schauer, F. (2010). Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. Journal of basic microbiology, 50(3), 241–253. https://doi.org/10.1002/jobm.200900358

    Article  CAS  PubMed  Google Scholar 

  28. Azadi, D., & Shojaei, H. (2020). Biodegradation of polycyclic aromatic hydrocarbons, phenol and sodium sulfate by Nocardia species isolated and characterized from Iranian ecosystems. Scientific Reports, 10, 21860. https://doi.org/10.1038/s41598-020-78821-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warneke, S., Arenskötter, M., Tenberge, K. B., & Steinbüchel, A. (2007). Bacterial degradation of poly(trans-1,4-isoprene) (gutta percha). Microbiology (Reading, England), 153(Pt 2), 347–356. https://doi.org/10.1099/mic.0.2006/000109-0

    Article  CAS  Google Scholar 

  30. Berekaa, M. M. (2006). Colonization and microbial degradation of polyisoprene rubber by nocardiaform actinomycete Nocardia sp. strain-MBR. Biotechnology, 5, 234–239.

    Article  CAS  Google Scholar 

  31. Shah, A. A., Hasan, F., Shah, Z., & Kanwal, N. (2013). Biodegradation of natural and synthetic rubbers: A review. International Biodeterioration and Biodegradation, 83, 145–157. https://doi.org/10.1016/j.ibiod.2013.05.004

    Article  CAS  Google Scholar 

  32. Williams, S. T., & Davies, F. L. (1967). Use of scanning electron microscope for the examination of actinomycetes. Journal of General Microbiology, 48(2), 171–177. https://doi.org/10.1099/00221287-48-2-171

    Article  CAS  PubMed  Google Scholar 

  33. Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613–1617.

    Article  CAS  Google Scholar 

  34. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evoluion, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  35. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  37. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., et al. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17, 355–362.

    Article  CAS  Google Scholar 

  39. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acid Research, 35, W407–W410.

    Article  Google Scholar 

  40. Hapuarachchi, S. N. S., Kariyapper, S. R., Gunawardana, M. B. D. M. D., Egodage, S., & Ariyadasa, T. U. (2016). Biodegradation of natural rubber latex by a novel bacterial species isolated from soil. Moratuwa Engineering Research Conference (MERCon), 2016, 293–296. https://doi.org/10.1109/MERCon.2016.7480156

    Article  Google Scholar 

  41. Danna, C. S., Cavalcante, D. G. S. M., Gomes, A. S., Kerche-Silva, L., Yoshihara, E., Osorio-Roman, I. O., Salmazo, L. O., Rodriguez-Perez, M. A., Aroca, R. F., & Job, A. E. (2016). Silver nanoparticles embedded in natural rubber films: Synthesis, characterization, and evaluation of in vitro toxicity. Journal of Nanomaterials, 2016, 2368630. https://doi.org/10.1155/2016/2368630

    Article  CAS  Google Scholar 

  42. Vivod, R., Oetermann, S., Hiessl, S., Gutsche, S., Remmers, N., Meinert, C., Voigt, B., Riedel, K., & Steinbüchel, A. (2017). Oligo(cis-1,4-isoprene) aldehyde-oxidizing dehydrogenases of the rubber-degrading bacterium Gordonia polyisoprenivorans VH2. Applied Microbiology and Biotechnology, 101(21), 7945–7960. https://doi.org/10.1007/s00253-017-8508-x

    Article  CAS  PubMed  Google Scholar 

  43. Bröker, D., Dietz, D., Arenskötter, M., & Steinbüchel, A. (2008). The genomes of the non-clearing-zone-forming and natural-rubber-degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains. Applied and Environmental Microbiology, 74(8), 2288–2297. https://doi.org/10.1128/AEM.02145-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watcharakul, S., Röther, W., Birke, J., Umsakul, K., Hodgson, B., & Jendrossek, D. (2016). Biochemical and spectroscopic characterization of purified Latex Clearing Protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiology, 16, 92. https://doi.org/10.1186/s12866-016-0703-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ilcu, L., Röther, W., Birke, J., Brausemann, A., Einsle, O., & Jendrossek, D. (2017). Structural and functional analysis of latex clearing protein (Lcp) provides insight into the enzymatic cleavage of rubber. Scientific Reports, 7, 6179. https://doi.org/10.1038/s41598-017-05268-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vivod, R., Andler, R., Oetermann, S., Altenhoff, A. L., Seipel, N., Holtkamp, M., Hogeback, J., Karst, U., & Steinbüchel, A. (2020). Characterization of the latex clearing protein of the poly(cis-1,4-isoprene) and poly(trans-1,4-isoprene) degrading bacterium Nocardia nova SH22a. Journal of General and Applied Microbiology, 65(6), 293–300. https://doi.org/10.2323/jgam.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  47. Linh, D. V., Huong, N. L., Tabata, M., Imai, S., Iijima, S., Kasai, D., Anh, T. K., & Fukuda, M. (2017). Characterization and functional expression of a rubber degradation gene of a Nocardia degrader from a rubber-processing factory. Journal of Bioscience and Bioengineering, 123(4), 412–418. https://doi.org/10.1016/j.jbiosc.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  48. Birke, J., & Jendrossek, D. (2019). Solimonas fluminis has an active latex-clearing protein. Applied Microbiology and Biotechnology, 103(19), 8229–8239. https://doi.org/10.1007/s00253-019-10085-w

    Article  CAS  PubMed  Google Scholar 

  49. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular System Biology, 7, 539. https://doi.org/10.1038/msb.2011.75

    Article  Google Scholar 

  50. Wilson, J. W. (2012). Nocardiosis: Updates and clinical overview. Mayo Clinic proceedings, 87(4), 403–407. https://doi.org/10.1016/j.mayocp.2011.11.016

    Article  PubMed  PubMed Central  Google Scholar 

  51. Al Akhrass, F., Hachem, R., Mohamed, J. A., Tarrand, J., Kontoyiannis, D. P., Chandra, J., Ghannoum, M., Haydoura, S., Chaftari, A. M., & Raad, I. (2011). Central venous catheter-associated Nocardia bacteremia in cancer patients. Emergence in Infectious Disease, 17(9), 1651–1658. https://doi.org/10.3201/eid1709.101810

    Article  Google Scholar 

  52. Tsuchii, A., Suzuki, T., & Takeda, K. (1985). Microbial DEGRADATION OF NATURAL RUBBER VULCANIZATES. Applied and Environmental Microbiology, 50, 965–970.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BS is thankful to University of Calcutta for his fellowship. We are especially thankful to Dr. Prithidipa Sahoo, Department of Chemistry, Visva-Bharati University, for her generous help to interpret FTIR data and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BS designed and performed the experiment and wrote the main manuscript text; AGM helped in acquisition and analysing the in silico data; MPS helped in editing the draft; SM conceptualized the research, designed the experiments and critically revised the manuscript.

Corresponding author

Correspondence to Sukhendu Mandal.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors have consent to publish the manuscript in this journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3033 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B., Gupta, A.M., Shah, M.P. et al. Poly-cis-isoprene Degradation by Nocardia sp. BSTN01 Isolated from Industrial Waste. Appl Biochem Biotechnol 194, 3333–3350 (2022). https://doi.org/10.1007/s12010-022-03854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03854-3

Keywords

Navigation