Skip to main content
Log in

Computational Binding Analysis of Ethyl 3,3,5,5-Tetracyano-2-Hydroxy-2-Methyl-4,6-Diphenylcyclohexane-1-Carboxylate in Calf Thymus DNA

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present paper, several computational binding analyses were performed on ethyl 3,3,5,5-tetracyano-2-hydroxy-2-methyl-4,6-diphenylcyclohexane-1-carboxylate which was newly synthesized by three-component condensation of benzaldehyde with ethyl acetoacetate and malononitrile in the presence of trichloroacetic acid, and the structure was finally proved by X-ray analysis. The visualization of molecular interaction was carried out through Hirshfeld surface analysis and ESP. The atomic charges, HOMO, LUMO, and electrostatic potential were also studied to explore the insight of the molecule deeper, and then, natural bonding orbitals (NBO) and non-linear optical properties (NLO) were calculated to reveal the interactions that happen to be between the filled and vacant orbitals. Afterwards, molecular docking studies predicted the compound binding mode fits in the minor groove of DNA and remained interacts via stable bonding as validated by molecular dynamics simulations. The binding energy estimation also affirmed domination van der Waals and electrostatic energies. Lastly, the compound was found as good drug-like molecule and had good pharmacokinetic profile with exception of toxic moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

All data and materials that were used in the article are available.

References

  1. McGlacken, G. P., & Fairlamb, I. J. S. (2005). 2-Pyrone natural products and mimetics: Isolation, characterisation and biological activity. Natural product reports, 22(3), 369–385.

    Article  CAS  PubMed  Google Scholar 

  2. Williams, D. R., & Heidebrecht, R. W. (2003). Total synthesis of (+)-4, 5-deoxyneodolabelline. Journal of the American Chemical Society, 125(7), 1843–1850.

    Article  CAS  PubMed  Google Scholar 

  3. Pandey, G., Singh, R. P., Garg, A., & Singh, V. K. (2005). Synthesis of Mannich type products via a three-component coupling reaction. Tetrahedron Letters, 46(12), 2137–2140.

    Article  CAS  Google Scholar 

  4. Danishefsky, S. J., Selnick, H. G., Zelle, R. E., & DeNinno, M. P. (1988). Total synthesis of zincophorin. Journal of the American Chemical Society, 110(13), 4368–4378.

    Article  CAS  Google Scholar 

  5. Wu, J.Y.-C., Fong, W.-F., Zhang, J.-X., Leung, C.-H., Kwong, H.-L., Yang, M.-S., & Cheung, H.-Y. (2003). Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. European journal of pharmacology, 473(1), 9–17.

  6. Kurbanova, M. M., Sadygova, A. Z., Gadirova, E. M., Askerov, R. K., & Maharramov, A. M. (2019). First synthesis and structure of ethyl 3, 3, 5, 5-tetracyano-2-hydroxy-2-methyl-4, 6-diphenylcyclohexane-1-carboxylate. Russian Journal of Organic Chemistry, 55(3), 381–383.

    Article  CAS  Google Scholar 

  7. Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32.

    Article  CAS  Google Scholar 

  8. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Nakatsuji, H. (2016). Gaussian 16. Gaussian, Inc.

  9. Dennington, R., Keith, T., & Millam, J. (2009). GaussView, version 5.

  10. Stash, A. I., & Tsirelson, V. G. (2014). Developing WinXPRO: A software for determination of the multipole-model-based properties of crystals. Journal of Applied Crystallography, 47(6), 2086–2089.

    Article  CAS  Google Scholar 

  11. Forli, W., Halliday, S., Belew, R., & Olson, A. J. (2012). AutoDock Version 4.2. Journal of Medicinal Chemistry, 55, 623–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  13. Case, D. A., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E. I., … Giambasu, G. (n.d.). Amber 2020, 2020. Google Scholar There is no corresponding record for this reference.

  14. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (n.d.). J Comp Chem 25 (9), 1157 (2004). DOI.

  15. Kräutler, V., Van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of computational chemistry, 22(5), 501–508.

    Article  Google Scholar 

  16. Roe, D. R., & Cheatham, T. E., III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of chemical theory and computation, 9(7), 3084–3095.

    Article  CAS  PubMed  Google Scholar 

  17. Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  19. Hodgson, J. (2001). ADMET—turning chemicals into drugs. Nature biotechnology, 19(8), 722–726.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., … Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067–1069.

  21. Zhang, Y., & Benet, L. Z. (2001). The gut as a barrier to drug absorption. Clinical pharmacokinetics, 40(3), 159–168.

    Article  CAS  PubMed  Google Scholar 

  22. Lei, T., Sun, H., Kang, Y., Zhu, F., Liu, H., Zhou, W., … Hou, T. (2017). ADMET evaluation in drug discovery. 18. Reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches. Molecular pharmaceutics, 14(11), 3935–3953.

  23. Chico, L. K., Van Eldik, L. J., & Watterson, D. M. (2009). Targeting protein kinases in central nervous system disorders. Nature reviews Drug discovery, 8(11), 892–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ertl, P. (2007). In molecular drug properties: Measurement and prediction. Mannhold R. Wiley-VCH Weinheim.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Malahat Kurbanova, Arzu Sadigova, and Abel Magerramov participated in the emergence of the synthesis. Rizvan Askerov contributed to X-ray analysis and Youness El Bakri, Kandasamy Saravanan, and Sajjad Ahmad took part in theoretical calculations.

Corresponding authors

Correspondence to Malahat Kurbanova or Youness El Bakri.

Ethics declarations

Ethical Approval

All ethical norms were maintained by the authors during the article preparation process.

Consent to Participate

All authors agree to participate in the process.

Consent for Publication

All authors agree to publish the article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbanova, M., Saravanan, K., Ahmad, S. et al. Computational Binding Analysis of Ethyl 3,3,5,5-Tetracyano-2-Hydroxy-2-Methyl-4,6-Diphenylcyclohexane-1-Carboxylate in Calf Thymus DNA. Appl Biochem Biotechnol 195, 5338–5354 (2023). https://doi.org/10.1007/s12010-022-03849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03849-0

Keywords

Navigation