Skip to main content

Advertisement

Log in

A Systemic Review on the Synthesis, Characterization, and Applications of Palladium Nanoparticles in Biomedicine

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Palladium nanoparticles (Pd NPs) have been considered as a potential candidate in the field of biomedical applications due to its unique properties such as huge catalytic, hydrogen storage, and sensing behavior. Therefore, Pd NPs have shown to have a significant potential for the development of antimicrobials, wound healing, antioxidant, and anticancer property in recent days. There are plenty of reports that showed superior properties of noble metals. However, only very few studies have been undertaken to explore the advantage of Pd NPs in the field of biomedical applications. This review reports detailed and comprehensive studies comprising of the synthesis, characterization, and potential applications of Pd NPs in biomedicine. This report provides evidences in the literature documented by early researchers to understand the potential applications of Pd NPs to be explored in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Azharuddin, M., Zhu, G. H., Das, D., Ozgur, E., Uzun, L., Turner, A. P., & Patra, H. K. (2019). A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications, 55(49), 6964–6996

    Article  CAS  PubMed  Google Scholar 

  2. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, P., Acosta-Torres, M., & Shin, L. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 1–33. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  3. Adams, C. P., Walker, K. A., Obare, S. O., & Docherty, K. M. (2014). Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One, 9(1), e85981. https://doi.org/10.1371/journal.pone.0085981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, A., & Ostrom, C. (2015). Palladium-based nanomaterials: Synthesis and electrochemical applications. Chemical Reviews, 115(21), 11999–12044. https://doi.org/10.1021/acs.chemrev.5b00324

    Article  CAS  PubMed  Google Scholar 

  5. Pokropivny, V. V., & Skorokhod, V. V. (2007). Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Materials Science and Engineering: C, 27(5–8), 990–993. https://doi.org/10.1016/j.msec.2006.09.023

    Article  CAS  Google Scholar 

  6. Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  7. Yang, G., Phua, S. Z. F., Bindra, A. K., & Zhao, Y. (2019). Degradability and clearance of inorganic nanoparticles for biomedical applications. Advanced Materials, 31(10), 1805730. https://doi.org/10.1002/adma.201805730

    Article  CAS  Google Scholar 

  8. Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284. https://doi.org/10.1016/j.msec.2014.08.031

  9. Nekoueian, K., Amiri, M., Sillanpää, M., Marken, F., Boukherroub, R., & Szunerits, S. (2019). Carbon-based quantum particles: An electroanalytical and biomedical perspective. Chemical Society Reviews, 48(15), 4281–4316

    Article  CAS  PubMed  Google Scholar 

  10. Kim, T., & Hyeon, T. (2013). Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology, 25(1), 012001

    Article  PubMed  Google Scholar 

  11. Dhand, C., Dwivedi, N., Loh, X. J., Ying, A. N. J., Verma, N. K., Beuerman, R. W., & Ramakrishna, S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances, 5(127), 105003–105037. https://doi.org/10.1039/C5RA19388E

    Article  CAS  Google Scholar 

  12. Cristoforetti, G., Pitzalis, E., Spiniello, R., Ishak, R., & Muniz-Miranda, M. (2011). Production of palladium nanoparticles by pulsed laser ablation in water and their characterization. The Journal of Physical Chemistry C, 115(12), 5073–5083. https://doi.org/10.1021/jp109281q

    Article  CAS  Google Scholar 

  13. Marzun, G., Nakamura, J., Zhang, X., Barcikowski, S., & Wagener, P. (2015). Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts. Applied Surface Science, 348, 75–84. https://doi.org/10.1016/j.apsusc.2015.01.108

    Article  CAS  Google Scholar 

  14. Lee, S. J., Yu, Y., Jung, H. J., Naik, S. S., Yeon, S., & Choi, M. Y. (2021). Efficient recovery of palladium nanoparticles from industrial wastewater and their catalytic activity toward reduction of 4-nitrophenol. Chemosphere, 262, 128358. https://doi.org/10.1016/j.chemosphere.2020.128358

    Article  CAS  PubMed  Google Scholar 

  15. Stepanov, A., Mavrogenes, J. A., Meffre, S., & Davidson, P. (2014). The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167(6), 1–8. https://doi.org/10.1007/s00410-014-1009-3

    Article  CAS  Google Scholar 

  16. Peng, X., Cui, Z., Bai, X., & Lv, H. (2018). Bio-synthesis of palladium nanocubes and their electrocatalytic properties. IET Nanobiotechnology, 12(8), 1031–1036

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kateřina, P., Anna, K., Kiška, T., Fridrichová, D., Martaus, A., Rokicińska, A., Kuśtrowski, P., & Obalová, L. (2019). Effect of support on the catalytic activity of Co3O4-Cs deposited on open-cell ceramic foams for N2O decomposition. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2020.110892

  18. Tan, L., Jones, T. R., Poitras, J., Xie, J., Liu, X., & Southam, G. (2020). Biochemical synthesis of palladium nanoparticles: The influence of chemical fixatives used in electron microscopy on nanoparticle formation and catalytic performance. Journal of Hazardous Materials, 398, 122945. https://doi.org/10.1016/j.jhazmat.2020.122945

    Article  CAS  PubMed  Google Scholar 

  19. Wen, X., Lerch, S., Wang, Z., Aboudiab, B., Tehrani-Bagha, A. R., Olsson, E., & Moth-Poulsen, K. (2020). Synthesis of palladium nanodendrites using a mixture of cationic and anionic surfactants. Langmuir, 36(7), 1745–1753. https://doi.org/10.1021/acs.langmuir.9b03804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mourdikoudis, S., Montes-García, V., Rodal-Cedeira, S., Winckelmans, N., Pérez-Juste, I., Wu, H., & Pastoriza-Santos, I. (2019). Highly porous palladium nanodendrites: Wet-chemical synthesis, electron tomography and catalytic activity. Dalton Transactions, 48(11), 3758–3767

    Article  CAS  PubMed  Google Scholar 

  21. Noh, J. H., & Meijboom, R. (2014). Dendrimer-templated Pd nanoparticles and Pd nanoparticles synthesized by reverse microemulsions as efficient nanocatalysts for the Heck reaction: A comparative study. Journal of Colloid and Interface Science, 415, 57–69. https://doi.org/10.1016/j.jcis.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  22. Sun, X., Qiang, Q., Yin, Z., Wang, Z., Ma, Y., & Zhao, C. (2019). Monodispersed silver-palladium nanoparticles for ethanol oxidation reaction achieved by controllable electrochemical synthesis from ionic liquid microemulsions. Journal of Colloid and Interface Science, 557, 450–457. https://doi.org/10.1016/j.jcis.2019.09.043

    Article  CAS  PubMed  Google Scholar 

  23. Wolak, S., Vidal, L., Becht, J. M., Michelin, L., & Balan, L. (2016). An efficient photochemical route to Pd nanoparticles; application to the one-step synthesis of Pd@ polymer nanocomposite films. Nanotechnology, 27(34), 345601. https://doi.org/10.1088/0957-4484/27/34/345601

    Article  CAS  PubMed  Google Scholar 

  24. Sun, D., Mazumder, V., Metin, O., & Sun, S. (2011). Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano, 5(8), 6458–6464. https://doi.org/10.1021/nn2016666

    Article  CAS  PubMed  Google Scholar 

  25. Gharachorlou, A., Detwiler, M. D., Nartova, A. V., Lei, Y., Lu, J., Elam, J. W. ... Zemlyanov, D. Y. (2014). Palladium nanoparticle formation on TiO2 (110) by thermal decomposition of palladium (II) hexafluoroacetylacetonate. ACS Applied Materials & Interfaces, 6(16), 14702–14711. https://doi.org/10.1021/am504127k

    Article  CAS  Google Scholar 

  26. Zeng, F. W., Zhang, D., & Spicer, J. B. (2018). Palladium nanoparticle formation processes in fluoropolymers by thermal decomposition of organometallic precursors. Physical Chemistry Chemical Physics, 20(37), 24389–24398. https://doi.org/10.1039/C8CP04997A

    Article  CAS  PubMed  Google Scholar 

  27. Wang, F., Sun, L. D., Feng, W., Chen, H., Yeung, M. H., Wang, J., & Yan, C. H. (2010). Heteroepitaxial growth of core–shell and core–multishell nanocrystals composed of palladium and gold. Small, 6(22), 2566–2575. https://doi.org/10.1002/smll.201000817

    Article  CAS  PubMed  Google Scholar 

  28. Wang, F., Li, C., Sun, L. D., Xu, C. H., Wang, J., Yu, J. C., & Yan, C. H. (2012). Porous single-crystalline palladium nanoparticles with high catalytic activities. Angewandte Chemie, 124(20), 4956–4960. https://doi.org/10.1002/ange.201107376

    Article  Google Scholar 

  29. Tang, S., Chen, M., & Zheng, N. (2014). Sub-10‐nm Pd Nanosheets with renal clearance for efficient near‐infrared photothermal cancer therapy. Small, 10(15), 3139–3144. https://doi.org/10.1002/smll.201303631

    Article  CAS  PubMed  Google Scholar 

  30. Di, L., Li, Z., Zhang, X., Wang, H., & Fan, Z. (2019). Reduction of supported metal ions by a safe atmospheric pressure alcohol cold plasma method. Catalysis Today, 337, 55–62. https://doi.org/10.1016/j.cattod.2019.02.060

    Article  CAS  Google Scholar 

  31. Sauvageau, J. F., Turgeon, S., Chevallier, P., & Fortin, M. A. (2018). Colloidal suspensions of platinum group metal nanoparticles (Pt, Pd, Rh) synthesized by dielectric barrier discharge plasma (DBD). Particle & Particle Systems Characterization, 35(4), 1700365. https://doi.org/10.1002/ppsc.201700365

    Article  CAS  Google Scholar 

  32. Azizi, S., Shahri, M. M., Rahman, H. S., Rahim, R. A., Rasedee, A., & Mohamad, R. (2017). Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. International Journal of Nanomedicine, 12, 8841. https://doi.org/10.2147/IJN.S149371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Attar, A., & Altikatoglu Yapaoz, M. (2018). Biosynthesis of palladium nanoparticles using Diospyros kaki leaf extract and determination of antibacterial efficacy. Preparative Biochemistry and Biotechnology, 48(7), 629–634. https://doi.org/10.1080/10826068.2018.1479862

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, X., Chen, L., Li, Y., Li, H., Xie, Z., Kuang, Q., & Zheng, L. (2019). Palladium NPs supported on sulfonic acid functionalized metal–organic frameworks as catalysts for biomass cascade reactions. Dalton Transactions, 48(17), 5515–5519

    Article  CAS  PubMed  Google Scholar 

  35. Li, C., Sato, T., & Yamauchi, Y. (2014). Size-controlled synthesis of mesoporous palladium nanoparticles as highly active and stable electrocatalysts. Chemical Communications, 50(79), 11753–11756

    Article  CAS  PubMed  Google Scholar 

  36. Phan, T. T. V., Huynh, T. C., & Oh, J. (2019). Photothermal responsive porous membrane for treatment of infected wound. Polymers, 11(10), 1679. https://doi.org/10.3390/polym11101679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, P., Dai, Z., Fang, M., Huang, X., Bao, J., & Gong, J. (2007). Novel dendritic palladium nanostructure and its application in biosensing. The Journal of Physical Chemistry C, 111(34), 12609–12616. https://doi.org/10.1021/jp072898l

    Article  CAS  Google Scholar 

  38. Scheen, G., Bassu, M., Douchamps, A., Zhang, C., Debliquy, M., & Francis, L. A. (2014). Palladium nanoparticle deposition via precipitation: A new method to functionalize macroporous silicon. Science and Technology of Advanced Materials. https://doi.org/10.1088/1468-6996/15/6/065002

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu, Z., Masel, R. I., Chen, Q., Kutz, R., Yang, H., Lewinski, K. … Lutz, D. R. (2016). Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. Journal of CO2 Utilization, 15, 50–56. https://doi.org/10.1016/j.jcou.2016.04.011

    Article  CAS  Google Scholar 

  40. Chekin, F., Bagheri, S., & Abd Hamid, S. B. (2015). Synthesis and spectroscopic characterization of palladium-doped titanium dioxide catalyst. Bulletin of Materials Science, 38(2), 461–465

    Article  CAS  Google Scholar 

  41. Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., & Yoshimura, M. (2016). One-step solution processing of Ag, Au and Pd@ MXene hybrids for SERS. Scientific Reports, 6(1), 1–9

    Article  Google Scholar 

  42. Ruas, C. P., Fischer, D. K., & Gelesky, M. A. (2013). PVP-stabilized palladium nanoparticles in silica as effective catalysts for hydrogenation reactions. Journal of Nanotechnology, 2013. https://doi.org/10.1155/2013/906740

  43. Zarchi, M. A. K., Abadi, S. S., & A. D., M. (2018). Synthesis of a polymer-capped palladium nanoparticles and its application as a reusable catalyst in oxidative coupling reaction of α-hydroxyketones and 1, 2-diamines for preparation of pyrazines and quinoxalines. Journal of the Iranian Chemical Society, 15(4), 915–929

    Article  CAS  Google Scholar 

  44. Tosenberger, A., Ataullakhanov, F., Bessonov, N., Panteleev, M., Tokarev, A., & Volpert, V. (2013). Modelling of thrombus growth in flow with a DPD-PDE method. Journal of Theoretical Biology, 337, 30–41. https://doi.org/10.1016/j.jtbi.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  45. Ren, L., Yang, F., Wang, C., Li, Y., Liu, H., Tu, Z. ... Xu, C. (2014). Plasma synthesis of oxidized graphene foam supporting Pd nanoparticles as a new catalyst for one-pot synthesis of dibenzyls. RSC advances, 4(108), 63048-63054. https://doi.org/10.1039/C4RA11060A

  46. Shi, J., Zhang, P., Han, Y., Wang, H., Wang, X., Yu, Y., & Sun, J. (2020). Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC. International Journal of Hydrogen Energy, 45(16), 10050–10058. https://doi.org/10.1016/j.ijhydene.2020.01.203

    Article  CAS  Google Scholar 

  47. Jo, Y. G., Kim, S. M., & Lee, S. Y. (2015). Size-tunable palladium nanoparticles synthesized using the solution plasma process and their electrocatalytic activities. Japanese Journal of Applied Physics, 55(1S), 01AE01

    Article  Google Scholar 

  48. Yang, W., Feng, Y., He, H., & Yang, Z. (2018). Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials, 11(7), 1160. https://doi.org/10.3390/ma11071160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anand, K., Tiloke, C., Phulukdaree, A., Ranjan, B., Chuturgoon, A., Singh, S., & Gengan, R. M. (2016). Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. Journal of Photochemistry and Photobiology B: Biology, 165, 87–95. https://doi.org/10.1016/j.jphotobiol.2016.09.039

    Article  CAS  PubMed  Google Scholar 

  50. Bhakyaraj, K., Kumaraguru, S., Gopinath, K., Sabitha, V., Kaleeswarran, P. R., Karthika, V. ... Arumugam, A. (2017). Eco-friendly synthesis of palladium nanoparticles using Melia azedarach leaf extract and their evaluation for antimicrobial and larvicidal activities. Journal of Cluster Science, 28(1), 463-476

  51. Tahir, K., Nazir, S., Li, B., Ahmad, A., Nasir, T., Khan, A. U. ... Hameed, M. U. (2016). Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities. Journal of Photochemistry and Photobiology B: Biology, 164, 164-173. https://doi.org/10.1016/j.jphotobiol.2016.09.030

  52. Gil, Y. G., Kang, S., Chae, A., Kim, Y. K., Min, D. H., & Jang, H. (2018). Synthesis of porous Pd nanoparticles by therapeutic chaga extract for highly efficient tri-modal cancer treatment. Nanoscale, 10(42), 19810–19817

    Article  CAS  PubMed  Google Scholar 

  53. Vaghela, H., Shah, R., & Pathan, A. (2018). Palladium nanoparticles mediated through bauhinia variegata: Potent in vitro anticancer activity against mcf-7 cell lines and antimicrobial assay. Current Nanomaterials, 3(3), 168–177. https://doi.org/10.2174/2405461504666190131142303

    Article  CAS  Google Scholar 

  54. Sharmila, G., Fathima, M. F., Haries, S., Geetha, S., Kumar, N. M., & Muthukumaran, C. (2017). Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. Journal of Molecular Structure, 1138, 35–40. https://doi.org/10.1016/j.molstruc.2017.02.097

    Article  CAS  Google Scholar 

  55. Vijilvani, C., Bindhu, M. R., Frincy, F. C., AlSalhi, M. S., Sabitha, S., Saravanakumar, K. ... Atif, M. (2020). Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves. Journal of Photochemistry and Photobiology B: Biology, 202, 111713. https://doi.org/10.1016/j.jphotobiol.2019.111713

  56. Saleh, E. A. M., Khan, A. U., Tahir, K., Almehmadi, S. J., Al-Abdulkarim, H. A., Alqarni,S. … Ullah, A. (2021). Phytoassisted synthesis and characterization of palladium nanoparticles (PdNPs); with enhanced antibacterial, antioxidant and hemolytic activities.Photodiagnosis and Photodynamic Therapy, 36, 102542. https://doi.org/10.1016/j.pdpdt.2021.102542

  57. Lee, S. J., Yu, Y., Jung, H. J., Naik, S. S., Yeon, S., & Choi, M. Y. (2021). Efficient recovery of palladium nanoparticles from industrial wastewater and their catalytic activity toward reduction of 4-nitrophenol. Chemosphere, 262, 128358. https://doi.org/10.1016/j.porgcoat.2020.106098

    Article  CAS  PubMed  Google Scholar 

  58. Kiani, M., Rabiee, N., Bagherzadeh, M., Ghadiri, A. M., Fatahi, Y., Dinarvand, R., & Webster, T. J. (2020). High-gravity-assisted green synthesis of palladium nanoparticles: The flowering of nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine, 30, 102297. https://doi.org/10.1016/j.nano.2020.102297

    Article  CAS  PubMed  Google Scholar 

  59. Shakil Hussain, S. M., Kamal, M. S., & Hossain, M. K. (2019). Recent developments in nanostructured palladium and other metal catalysts for organic transformation. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/1562130

  60. Fang, G., Li, W., Shen, X., Perez-Aguilar, J. M., Chong, Y., Gao, X. ... Zhou, R. (2018). Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-017-02502-3

  61. Ullah, S., Ahmad, A., Khan, A., Zhang, J., Raza, M., ur Rahman, A. ... Yuan, Q. (2018). Palladium nanoparticles synthesis, characterization using glucosamine as the reductant and stabilizing agent to explore their antibacterial & catalytic applications. Microbial Pathogenesis, 125, 150-157. https://doi.org/10.1016/j.micpath.2018.09.020

  62. Ali, J., Ali, N., Wang, L., Waseem, H., & Pan, G. (2019). Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. Journal of Microbiological Methods, 159, 18–25. https://doi.org/10.1016/j.mimet.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  63. Rai, M., Gade, A., Gaikwad, S., Marcato, P. D., & Durán, N. (2012). Biomedical applications of nanobiosensors: The state-of-the-art. Journal of the Brazilian Chemical Society, 23, 14–24. https://doi.org/10.1590/S0103-50532012000100004

    Article  CAS  Google Scholar 

  64. Yi, X., Wu, Y., Tan, G., Yu, P., Zhou, L., Zhou, Z. ... Ning, C. (2017). Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor. Scientific Reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-07909-y

  65. Soleymani, L., Fang, Z., Sargent, E. H., & Kelley, S. O. (2009). Programming the detection limits of biosensors through controlled nanostructuring. Nature Nanotechnology, 4(12), 844–848. https://doi.org/10.1038/nnano.2009.276

    Article  CAS  PubMed  Google Scholar 

  66. Yun, Y. H., Lee, B. K., & Park, K. (2015). Controlled drug delivery: Historical perspective for the next generation. Journal of Controlled Release, 219, 2–7. https://doi.org/10.1016/j.jconrel.2015.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kang, S., Shin, W., Kang, K., Choi, M. H., Kim, Y. J., Kim, Y. K. ... Jang, H. (2018). Revisiting of Pd nanoparticles in cancer treatment: all-round excellence of porous Pd nanoplates in gene-thermo combinational therapy. ACS applied materials & interfaces, 10(16), 13819-13828. https://doi.org/10.1021/acsami.8b01000

  68. Shanthi, K., Vimala, K., Gopi, D., & Kannan, S. (2015). Fabrication of a pH responsive DOX conjugated PEGylated palladium nanoparticle mediated drug delivery system: An in vitro and in vivo evaluation. RSC Advances, 5(56), 44998–45014

    Article  CAS  Google Scholar 

  69. Petrarca, C., & Lupo, G. (2014). An improved methodological approach for denoising of partial discharge data by the wavelet transform. Progress in Electromagnetics Research B, 58, 205–217

    Article  Google Scholar 

  70. Gurunathan, S., Kim, E., Han, J. W., Park, J. H., & Kim, J. H. (2015). Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules, 20(12), 22476–22498. https://doi.org/10.3390/molecules201219860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26

    Article  CAS  PubMed  Google Scholar 

  72. Balbín, A., Gaballo, F., Ceballos-Torres, J., Prashar, S., Fajardo, M., Kaluđerović, G. N., & Gómez-Ruiz, S. (2014). Dual application of Pd nanoparticles supported on mesoporous silica SBA-15 and MSU-2: Supported catalysts for C–C coupling reactions and cytotoxic agents against human cancer cell lines. RSC Advances, 4(97), 54775–54787

    Article  Google Scholar 

  73. Huang, X., & El-Sayed, M. A. (2011). Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine, 47(1), 1–9. https://doi.org/10.1016/j.ajme.2011.01.001

    Article  CAS  Google Scholar 

  74. Chen, M., Chen, S., He, C., Mo, S., Wang, X., Liu, G., & Zheng, N. (2017). Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging. Nano Research, 10(4), 1234–1248

    Article  CAS  Google Scholar 

  75. Huang, X., Tang, S., Mu, X., Dai, Y., Chen, G., Zhou, Z. ... Zheng, N. (2011). Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 6(1), 28-32. https://doi.org/10.1038/nnano.2010.235

  76. Xiao, J. W., Fan, S. X., Wang, F., Sun, L. D., Zheng, X. Y., & Yan, C. H. (2014). Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale, 6(8), 4345–4351

    Article  CAS  PubMed  Google Scholar 

  77. Wilkinson, K. E., Palmberg, L., Witasp, E., Kupczyk, M., Feliu, N., Gerde, P. ...  Kessler, V. G. (2011). Solution-engineered palladium nanoparticles: model for health effect studies of automotive particulate pollution. ACS Nano, 5(7), 5312-5324. https://doi.org/10.1021/nn1032664

  78. Leso, V., & Iavicoli, I. (2018). Palladium nanoparticles: Toxicological effects and potential implications for occupational risk assessment. International Journal of Molecular Sciences, 19(2), 503. https://doi.org/10.3390/ijms19020503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iavicoli, I., Fontana, L., Corbi, M., Leso, V., Marinaccio, A., Leopold, K. ... Sgambato, A. (2015). Exposure to palladium nanoparticles affects serum levels of cytokines in female wistar rats. PLoS One, 10(11), e0143801. https://doi.org/10.1371/journal.pone.0143801

  80. Bharathiraja, S., Bui, N. Q., Manivasagan, P., Moorthy, M. S., Mondal, S., Seo, H. ... Oh, J. (2018). Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Scientific Reports, 8(1), 1-16. https://doi.org/10.1038/s41598-017-18966-8

Download references

Acknowledgements

This work has been supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), No. 2021R1A2C1010058 and 2020R1A2C110169011.

Author information

Authors and Affiliations

Authors

Contributions

DM, data acquisition, planning, review, and revision; HK, data acquisition and tabulation; PS, review and proofreading; JWK and SYL, supervision, review, and proofreading.

Corresponding authors

Correspondence to Jung-Wan Kim or Sang-Yul Lee.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MubarakAli, D., Kim, H., Venkatesh, P.S. et al. A Systemic Review on the Synthesis, Characterization, and Applications of Palladium Nanoparticles in Biomedicine. Appl Biochem Biotechnol 195, 3699–3718 (2023). https://doi.org/10.1007/s12010-022-03840-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03840-9

Keywords

Navigation