Skip to main content

Advertisement

Log in

Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Obesity, diabetes, and other cardiovascular diseases are directly related to the high consumption of processed sugars with high caloric content. The current food industry has novel trends related to replacing highly caloric sugars with non-caloric or low-calorie sweeteners. Mannitol, a polyol, represents a suitable substitute because it has a low caloric content and does not induce a glycemic response, which is crucial for diabetic people. Consequently, this polyol has multiple applications in the food, pharmaceutical, and medicine industries. Mannitol can be produced by plant extraction, chemical or enzymatic synthesis, or microbial fermentation. Different in vitro processes have been developed regarding enzymatic synthesis to obtain mannitol from fructose, glucose, or starch-derived substrates. Various microorganisms such as yeast, fungi, and bacteria are applied for microbial fermentation. Among them, heterofermentative lactic acid bacteria (LAB) represent a reliable and feasible alternative due to their metabolic characteristics. In this regard, the yield and productivity of mannitol depend on the culture system, the growing conditions, and the culture medium composition. In situ mannitol production represents a novel approach to decrease the sugar content in food and beverages. Also, genetic engineering offers an interesting option to obtain mannitol-producing strains. This review presents and discusses the most significant advances that have been made in the mannitol production through fermentation by heterofermentative LAB, including the pertinent and critical analysis of culture conditions considering broth composition, reaction systems, and their effects on productivities and yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Wisselink et al. [5]

Fig. 3

Modified from Wisselink et al. [5]

Fig. 4

Modified from Sahin et al. [94]

Fig. 5

Modified from Gaspar et al. [96]

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Akinterinwa, O., Khankal, R., & Cirino, P. C. (2008). Metabolic engineering for bioproduction of sugar alcohols. Current Opinion in Biotechnology, 19(5), 461–467. https://doi.org/10.1016/j.copbio.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  2. Grembecka, M. (2015). Sugar alcohols—their role in the modern world of sweeteners: A review. European Food Research and Technology, 241(1), 1–14. https://doi.org/10.1007/s00217-015-2437-7

    Article  CAS  Google Scholar 

  3. Park, Y. C., Oh, E. J., Jo, J. H., Jin, Y. S., & Seo, J. H. (2016). Recent advances in biological production of sugar alcohols. Current Opinion in Biotechnology, 37, 105–113. https://doi.org/10.1016/j.copbio.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  4. Rice, T., Zannini, E., K. Arendt, E., & Coffey, A. (2020). A review of polyols–biotechnological production, food applications, regulation, labeling and health effects. Critical Reviews in Food Science and Nutrition, 60(12), 2034–2051. https://doi.org/10.1080/10408398.2019.1625859

  5. Wisselink, H., Weusthuis, R., Eggink, G., Hugenholtz, J., & Grobben, G. (2002). Mannitol production by lactic acid bacteria: A review. International Dairy Journal, 12(2–3), 151–161. https://doi.org/10.1016/S0958-6946(01)00153-4

    Article  CAS  Google Scholar 

  6. Martău, G. A., Coman, V., & Vodnar, D. C. (2020). Recent advances in the biotechnological production of erythritol and mannitol. Critical Reviews in Biotechnology, 40(5), 608–622. https://doi.org/10.1080/07388551.2020.1751057

    Article  CAS  PubMed  Google Scholar 

  7. Solomon, P. S., Waters, O. D. C., & Oliver, R. P. (2007). Decoding the mannitol enigma in filamentous fungi. Trends in Microbiology, 15(6), 257–262. https://doi.org/10.1016/j.tim.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  8. Dai, Y., Meng, Q., Mu, W., & Zhang, T. (2017). Recent advances in the applications and biotechnological production of mannitol. Journal of Functional Foods, 36, 404–409. https://doi.org/10.1016/j.jff.2017.07.022

    Article  CAS  Google Scholar 

  9. Patel, T. K., & Williamson, J. D. (2016). Mannitol in Plants, Fungi, and Plant-Fungal Interactions. Trends in Plant Science, 21(6), 486–497. https://doi.org/10.1016/j.tplants.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Grembecka, M. (2018). Sugar Alcohols as Sugar Substitutes in Food Industry. In J.-M. Mérillon & K. G. Ramawat (Eds.), Sweeteners: Pharmacology, Biotechnology and Applications (First., pp. 547–573). Switzerland: Springer. https://doi.org/10.1007/978-3-319-27027-2

  11. Sylvetsky, A. C., & Rother, K. I. (2016). Trends in the consumption of low-calorie sweeteners. Physiology and Behavior, 164, 446–450. https://doi.org/10.1016/j.physbeh.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  12. Williams, E. P., Mesidor, M., Winters, K., Dubbert, P. M., & Wyatt, S. B. (2015). Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Current obesity reports, 4(3), 363–370. https://doi.org/10.1007/s13679-015-0169-4

    Article  PubMed  Google Scholar 

  13. Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., … Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 384(9945), 766–781. https://doi.org/10.1016/S0140-6736(14)60460-8

  14. Mooradian, A. D., Smith, M., & Tokuda, M. (2017). The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clinical Nutrition ESPEN, 18, 1–8. https://doi.org/10.1016/j.clnesp.2017.01.004

    Article  PubMed  Google Scholar 

  15. Agha, M., & Agha, R. (2017). The rising prevalence of obesity: Part A:Impact on public health. International Journal of Surgery Oncology, 2(7), 1–6. https://doi.org/10.1097/IJ9.0000000000000017

    Article  Google Scholar 

  16. Chen, M., Zhang, W., Wu, H., Guang, C., & Mu, W. (2020). Mannitol: Physiological functionalities, determination methods, biotechnological production, and applications. Applied Microbiology and Biotechnology, 104(16), 6941–6951. https://doi.org/10.1007/s00253-020-10757-y

    Article  CAS  PubMed  Google Scholar 

  17. U.S. Government-FDA. (2020). Code of Federal Regulations -Title 21: Food and Drugs. Retrieved May 14, 2020, from https://www.ecfr.gov/cgi-bin/text-idx?SID=b4e358b1e7a8cc1f970a78df574da626&mc=true&node=se21.3.180_125&rgn=div8

  18. Ortiz, M. E., Bleckwedel, J., Raya, R. R., & Mozzi, F. (2013). Biotechnological and in situ food production of polyols by lactic acid bacteria. Applied Microbiology and Biotechnology, 97(11), 4713–4726. https://doi.org/10.1007/s00253-013-4884-z

    Article  CAS  PubMed  Google Scholar 

  19. Saha, B. C., & Racine, F. M. (2011). Biotechnological production of mannitol and its applications. Applied Microbiology and Biotechnology, 89(4), 879–891. https://doi.org/10.1007/s00253-010-2979-3

    Article  CAS  PubMed  Google Scholar 

  20. Ohrem, H. L., Schornick, E., Kalivoda, A., & Ognibene, R. (2014). Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms? Pharmaceutical Development and Technology, 19(3), 257–262. https://doi.org/10.3109/10837450.2013.775154

    Article  CAS  PubMed  Google Scholar 

  21. Saffari, M., Ebrahimi, A., & Langrish, T. (2016). Nano-confinement of acetaminophen into porous mannitol through adsorption method. Microporous and Mesoporous Materials, 227, 95–103. https://doi.org/10.1016/j.micromeso.2016.02.047

    Article  CAS  Google Scholar 

  22. Kulkarni, S. S., Suryanarayanan, R., Rinella, J. V., & Bogner, R. H. (2018). Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations. European Journal of Pharmaceutics and Biopharmaceutics, 131, 70–81. https://doi.org/10.1016/j.ejpb.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  23. André, P., & Villain, F. (2017). Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: A literature review. International Journal of Cosmetic Science, 39(4), 355–360. https://doi.org/10.1111/ics.12386

    Article  CAS  PubMed  Google Scholar 

  24. Lugo-Baruqui, J. A., Ayyathurai, R., Sriram, A., & Pragatheeshwar, K. D. (2019). Use of Mannitol for Ischemia Reperfusion Injury in Kidney Transplant and Partial Nephrectomies—Review of Literature. Current Urology Reports, 20(1). https://doi.org/10.1007/s11934-019-0868-6

  25. Backer, V. (2019). Mannitol and the mechanisms behind bronchoconstriction. Journal of Allergy and Clinical Immunology, 144(4), 931–932. https://doi.org/10.1016/j.jaci.2019.06.048

    Article  PubMed  Google Scholar 

  26. Ghoreishi, S. M., Shahrestani, G. R., & Ghaziaskar, H. S. (2009). Experimental and modeling investigation of supercritical extraction of mannitol from Olive leaves. Chemical Engineering and Technology, 32(1), 45–54. https://doi.org/10.1002/ceat.200800441

    Article  CAS  Google Scholar 

  27. Ghoreishi, S. M., & Sharifi, S. (2001). Modeling of supercritical extraction of mannitol from plane tree leaf. Journal of Pharmaceutical and Biomedical Analysis, 24, 1037–1048. https://doi.org/10.1016/s0731-7085(00)00538-0

    Article  CAS  PubMed  Google Scholar 

  28. Ghoreishi, S. M., & Shahrestani, R. G. (2009). Subcritical water extraction of mannitol from olive leaves. Journal of Food Engineering, 93(4), 474–481. https://doi.org/10.1016/j.jfoodeng.2009.02.015

    Article  CAS  Google Scholar 

  29. Lama-Muñoz, A., Contreras, M. del M., Espínola, F., Moya, M., Romero, I., & Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320, 126626. https://doi.org/10.1016/j.foodchem.2020.126626

  30. Soetaert, W., Vanhooren, P. T., & Vandamme, E. J. (1999). The Production of Mannitol by Fermentation. In C. Bucke (Ed.), Carbohydrate Biotechnology Protocols (Vol. 10, pp. 261–275). Totowa, NJ: Humana Press Inc. https://doi.org/10.1007/978-1-59259-261-6_21

  31. Zhang, M., Cheng, C., Jiang, M., Xin, F., Gu, L., Wu, H., … Liu, J. (2018). Recent advances in microbial production of mannitol: utilization of low-cost substrates, strain development and regulation strategies. World Journal of Microbiology and Biotechnology, 34(3), 0. https://doi.org/10.1007/s11274-018-2425-8

  32. Kuusisto, J., Mikkola, J. P., Casal, P. P., Karhu, H., Väyrynen, J., & Salmi, T. (2005). Kinetics of the catalytic hydrogenation of D-fructose over a CuO-ZnO catalyst. Chemical Engineering Journal, 115(1–2), 93–102. https://doi.org/10.1016/j.cej.2005.09.020

    Article  CAS  Google Scholar 

  33. Zelin, J., Meyer, C. I., Regenhardt, S. A., Sebastian, V., Garetto, T. F., & Marchi, A. J. (2017). Selective liquid-phase hydrogenation of fructose to D-mannitol over copper-supported metallic nanoparticles. Chemical Engineering Journal, 319, 48–56. https://doi.org/10.1016/j.cej.2017.02.127

    Article  CAS  Google Scholar 

  34. Zelin, J., Regenhardt, S. A., Meyer, C. I., Duarte, H. A., Sebastian, V., & Marchi, A. J. (2019). Selective aqueous-phase hydrogenation of D-fructose into D-mannitol using a highly efficient and reusable Cu-Ni/SiO2 catalyst. Chemical Engineering Science, 206, 315–326. https://doi.org/10.1016/j.ces.2019.05.042

    Article  CAS  Google Scholar 

  35. Lu, F., Xu, W., Zhang, W., Guang, C., & Mu, W. (2019). Polyol dehydrogenases: Intermediate role in the bioconversion of rare sugars and alcohols. Applied Microbiology and Biotechnology, 103(16), 6473–6481. https://doi.org/10.1007/s00253-019-09980-z

    Article  CAS  PubMed  Google Scholar 

  36. Liu, S., Saha, B., & Cotta, M. (2005). Cloning, Expression, Purification, and Analysis of Mannitol Dehydrogenase Gene mtlK from Lactobacillus brevis. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 121(1–3), 391–401. https://doi.org/10.1007/978-1-59259-991-2_34

    Article  Google Scholar 

  37. Kulbe, K. D., Schwab, U., & Gudernatsch, W. (1987). Enzyme-Catalyzed Production of Mannitol and Gluconic Acid. Annals of the New York Academy of Sciences, 506, 552–568. https://doi.org/10.1111/j.1749-6632.1987.tb23850.x

    Article  CAS  PubMed  Google Scholar 

  38. Slatner, M., Nagl, G., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (1998). Enzymatic production of pure D-mannitol at high productivity. Biocatalysis and Biotransformation, 16(5), 351–363. https://doi.org/10.3109/10242429809003628

    Article  CAS  Google Scholar 

  39. Parmentier, S., Arnaut, F., Soetaert, W., & Vandamme, E. J. (2005). Enzymatic production of D-mannitol with the Leuconostoc pseudomesenteroides mannitol dehydrogenase coupled to a coenzyme regeneration system. Biocatalysis and Biotransformation, 23(1), 1–7. https://doi.org/10.1080/10242420500071664

    Article  CAS  Google Scholar 

  40. Maria, G. (2020). Model-based optimisation of a batch reactor with a coupled bi-enzymatic process for mannitol production. Computers and Chemical Engineering, 133, 1–7. https://doi.org/10.1016/j.compchemeng.2019.106628

    Article  CAS  Google Scholar 

  41. Xu, W., Lu, F., Wu, H., Zhang, W., & Guang, C. (2020). Identification of a highly thermostable mannitol 2-dehydrogenase from Caldicellulosiruptor morganii Rt8.B8 and its application for the preparation of D-mannitol. Process Biochemistry, 96, 194–201. https://doi.org/10.1016/j.procbio.2020.05.014

    Article  CAS  Google Scholar 

  42. Koko, M. Y. F., Mu, W., Hassanin, H. A. M., Zhang, S., Lu, H., Mohammed, J. K., … Yang, L. (2020). Archaeal hyperthermostable mannitol dehydrogenases: A promising industrial enzymes for D-mannitol synthesis. Food Research International, 137, 109638. https://doi.org/10.1016/j.foodres.2020.109638

  43. Wei, X., Li, Q., Hu, C., & You, C. (2021). An ATP-free in vitro synthetic enzymatic biosystem facilitating one-pot stoichiometric conversion of starch to mannitol. Applied Microbiology and Biotechnology, 105(5), 1913–1924. https://doi.org/10.1007/s00253-021-11154-9

    Article  CAS  PubMed  Google Scholar 

  44. Fontes, C. P. M. L., Honorato, T. L., Rabelo, M. C., & Rodrigues, S. (2009). Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess and Biosystems Engineering, 32(4), 493–499. https://doi.org/10.1007/s00449-008-0269-6

    Article  CAS  PubMed  Google Scholar 

  45. Song, K. H., Lee, J. K., Song, J. Y., Hong, S. G., Baek, H., Kim, S. Y., & Hyun, H. H. (2002). Production of mannitol by a novel strain of Candida magnoliae. Biotechnology Letters, 24(1), 9–12. https://doi.org/10.1023/A:1013824309263

    Article  CAS  Google Scholar 

  46. Lee, J. K., Song, J. Y., & Kim, S. Y. (2003). Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production. Biotechnology Progress, 19(3), 768–775. https://doi.org/10.1021/bp034025o

    Article  CAS  PubMed  Google Scholar 

  47. Baek, H., Song, K. H., Park, S. M., Kim, S. Y., & Hyun, H. H. (2003). Role of glucose in the bioconversion of fructose into mannitol by Candida magnoliae. Biotechnology Letters, 25(10), 761–765. https://doi.org/10.1023/A:1023512218206

    Article  CAS  PubMed  Google Scholar 

  48. Meng, Q., Zhang, T., Wei, W., Mu, W., & Miao, M. (2017). Production of Mannitol from a High Concentration of Glucose by Candida parapsilosis SK26.001. Applied Biochemistry and Biotechnology, 181(1), 391–406. https://doi.org/10.1007/s12010-016-2219-0

  49. Khan, A., Bhide, A., & Gadre, R. (2009). Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresource Technology, 100(20), 4911–4913. https://doi.org/10.1016/j.biortech.2009.04.048

    Article  CAS  PubMed  Google Scholar 

  50. Tomaszewska, L., Rywińska, A., & Gladkowski, W. (2012). Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. Journal of Industrial Microbiology and Biotechnology, 39(9), 1333–1343. https://doi.org/10.1007/s10295-012-1145-6

    Article  CAS  PubMed  Google Scholar 

  51. Yoshikawa, J., Habe, H., Morita, T., Fukuoka, T., Imura, T., Iwabuchi, H., … Kitamoto, D. (2014). Production of mannitol from raw glycerol by Candida azyma. Journal of Bioscience and Bioengineering, 117(6), 725–729. https://doi.org/10.1016/j.jbiosc.2013.11.016

  52. Rakicka-Pustułka, M., Miedzianka, J., Jama, D., Kawalec, S., Liman, K., Janek, T., … Lazar, Z. (2021). High value-added products derived from crude glycerol via microbial fermentation using Yarrowia clade yeast. Microbial Cell Factories, 20(1), 1–18. https://doi.org/10.1186/s12934-021-01686-0

  53. Vélëz, H., Glassbrook, N. J., & Daub, M. E. (2007). Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genetics and Biology, 44(4), 258–268. https://doi.org/10.1016/j.fgb.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  54. Ruijter, G. J. G., Visser, J., & Rinzema, A. (2004). Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation. Microbiology, 150(4), 1095–1101. https://doi.org/10.1099/mic.0.26723-0

    Article  CAS  PubMed  Google Scholar 

  55. Teertstra, W. R., Tegelaar, M., Dijksterhuis, J., Golovina, E. A., Ohm, R. A., & Wösten, H. A. B. (2017). Maturation of conidia on conidiophores of Aspergillus niger. Fungal Genetics and Biology, 98, 61–70. https://doi.org/10.1016/j.fgb.2016.12.005

    Article  PubMed  Google Scholar 

  56. Duan, R., Li, H., Li, H., Tang, L., Zhou, H., Yang, X., … Ding, Z. (2018). Enhancing the Production of D-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10. Applied Biochemistry and Biotechnology, 186(4), 990–998. https://doi.org/10.1007/s12010-018-2791-6

  57. De Vos, W. M. (2011). Systems solutions by lactic acid bacteria: From paradigms to practice. Microbial Cell Factories, 10(1), 1–13. https://doi.org/10.1186/1475-2859-10-S1-S2

    Article  Google Scholar 

  58. Sauer, M., Russmayer, H., Grabherr, R., Peterbauer, C. K., & Marx, H. (2017). The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends in Biotechnology, 35(8), 756–769. https://doi.org/10.1016/j.tibtech.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  59. Hatti-Kaul, R., Chen, L., Dishisha, T., & Enshasy, H. E. (2018). Lactic acid bacteria: From starter cultures to producers of chemicals. FEMS Microbiology Letters, 365(20), 1–20. https://doi.org/10.1093/femsle/fny213

    Article  CAS  Google Scholar 

  60. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of Lactobacilli. Journal of Applied Bacteriology, 23(1), 130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  61. Årsköld, E., Lohmeier-Vogel, E., Cao, R., Roos, S., Rådström, P., & Van Niel, E. W. J. (2008). Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis. Journal of Bacteriology, 190(1), 206–212. https://doi.org/10.1128/JB.01227-07

    Article  CAS  PubMed  Google Scholar 

  62. Burgé, G., Saulou-Bérion, C., Moussa, M., Allais, F., Athes, V., & Spinnler, H. E. (2015). Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains. Journal of Microbiology, 53(10), 702–710. https://doi.org/10.1007/s12275-015-5056-x

    Article  CAS  PubMed  Google Scholar 

  63. Song, S. H., & Vieille, C. (2009). Recent advances in the biological production of mannitol. Applied Microbiology and Biotechnology, 84(1), 55–62. https://doi.org/10.1007/s00253-009-2086-5

    Article  CAS  PubMed  Google Scholar 

  64. Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. https://doi.org/10.1016/j.cofs.2015.03.001

    Article  Google Scholar 

  65. Monedero, V., Pérez-Martínez, G., & Yebra, M. J. (2010). Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Applied Microbiology and Biotechnology, 86(4), 1003–1015. https://doi.org/10.1007/s00253-010-2494-6

    Article  CAS  PubMed  Google Scholar 

  66. Yun, J. W., & Kim, D. H. (1998). A Comparative Study of Mannitol Production by Two Lactic Acid Bacteria. Journal of Fermentation and Bioengineering, 85(2), 203–208. https://doi.org/10.1016/S0922-338X(97)86768-2

    Article  CAS  Google Scholar 

  67. Erten, H. (1998). Metabolism of fructose as an electron acceptor by Leuconostoc mesenteroides. Process Biochemistry, 33(7), 735–739. https://doi.org/10.1016/S0032-9592(98)00041-7

    Article  CAS  Google Scholar 

  68. Grobben, G. J., Peters, S. W. P. G., Wisselink, H. W., Weusthuis, R. A., Hoefnagel, M. H. N., Hugenholtz, J., & Eggink, G. (2001). Spontaneous Formation of a Mannitol-Producing Variant of Leuconostoc pseudomesenteroides Grown in the Presence of Fructose. Applied and Environmental Microbiology, 67(6), 2867–2870. https://doi.org/10.1128/AEM.67.6.2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. von Weymarn, N., Hujanen, M., & Leisola, M. (2002). Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochemistry, 37(11), 1207–1213. https://doi.org/10.1016/S0032-9592(01)00339-9

    Article  Google Scholar 

  70. von Weymarn, N., Kiviharju, K., & Leisola, M. (2002). High-level production of D-mannitol with membrane cell-recycle bioreactor. Journal of Industrial Microbiology and Biotechnology, 29(1), 44–49. https://doi.org/10.1038/sj.jim.7000262

    Article  CAS  Google Scholar 

  71. von Weymarn, N., Kiviharju, K. J., Jääskeläinen, S. T., & Leisola, M. S. A. (2003). Scale-up of a new bacterial mannitol production process. Biotechnology Progress, 19(3), 815–821. https://doi.org/10.1021/bp025718s

    Article  CAS  Google Scholar 

  72. Saha, B. C., & Nakamura, L. K. (2003). Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnology and Bioengineering, 82(7), 864–871. https://doi.org/10.1002/bit.10638

    Article  CAS  PubMed  Google Scholar 

  73. Rodríguez, C., Rimaux, T., Fornaguera, M. J., Vrancken, G., De Valdez, G. F., De Vuyst, L., & Mozzi, F. (2012). Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Applied Microbiology and Biotechnology, 93(6), 2519–2527. https://doi.org/10.1007/s00253-011-3617-4

    Article  CAS  PubMed  Google Scholar 

  74. Yue, M., Cao, H., Zhang, J., Li, S., Meng, Y., Chen, W., … Du, Y. (2013). Improvement of mannitol production by Lactobacillus brevis mutant 3-A5 based on dual-stage pH control and fed-batch fermentations. World Journal of Microbiology and Biotechnology, 29(10), 1923–1930. https://doi.org/10.1007/s11274-013-1357-6

  75. Tyler, C. A., Kopit, L., Doyle, C., Yu, A. O., Hugenholtz, J., & Marco, M. L. (2016). Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F. Journal of Applied Microbiology, 120(5), 1336–1345. https://doi.org/10.1111/jam.13108

    Article  CAS  PubMed  Google Scholar 

  76. Behare, P. V., Mazhar, S., Pennone, V., & McAuliffe, O. (2020). Evaluation of lactic acid bacteria strains isolated from fructose-rich environments for their mannitol-production and milk-gelation abilities. Journal of Dairy Science, 103(12), 11138–11151. https://doi.org/10.3168/jds.2020-19120

    Article  CAS  PubMed  Google Scholar 

  77. Saha, B. C. (2006). A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Applied Microbiology and Biotechnology, 72(4), 676–680. https://doi.org/10.1007/s00253-006-0364-z

    Article  CAS  PubMed  Google Scholar 

  78. Saha, B. C. (2006). Effect of salt nutrients on mannitol production by Lactobacillus intermedius NRRL B-3693. Journal of Industrial Microbiology and Biotechnology, 33(10), 887–890. https://doi.org/10.1007/s10295-006-0140-1

    Article  CAS  PubMed  Google Scholar 

  79. Saha, B. C. (2006). Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme and Microbial Technology, 39(5), 991–995. https://doi.org/10.1016/j.enzmictec.2006.02.001

    Article  CAS  Google Scholar 

  80. Racine, F. M., & Saha, B. C. (2007). Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochemistry, 42(12), 1609–1613. https://doi.org/10.1016/j.procbio.2007.09.001

    Article  CAS  Google Scholar 

  81. Saha, B. C., & Racine, F. M. (2010). Effects of pH and corn steep liquor variability on mannitol production by Lactobacillus intermedius NRRL B-3693. Applied Microbiology and Biotechnology, 87(2), 553–560. https://doi.org/10.1007/s00253-010-2552-0

    Article  CAS  PubMed  Google Scholar 

  82. Ortiz, M. E., Fornaguera, M. J., Raya, R. R., & Mozzi, F. (2012). Lactobacillus reuteri CRL 1101 highly produces mannitol from sugarcane molasses as carbon source. Applied Microbiology and Biotechnology, 95(4), 991–999. https://doi.org/10.1007/s00253-012-3945-z

    Article  CAS  PubMed  Google Scholar 

  83. Ortiz, M. E., Raya, R. R., & Mozzi, F. (2015). Efficient mannitol production by wild-type Lactobacillus reuteri CRL 1101 is attained at constant pH using a simplified culture medium. Applied Microbiology and Biotechnology, 99(20), 8717–8729. https://doi.org/10.1007/s00253-015-6730-y

    Article  CAS  PubMed  Google Scholar 

  84. Fontes, C. P. M. L., Santiago Silveira, M., Guilherme, A. A., Fernandes, F. A. N., & Rodrigues, S. (2013). Substitution of yeast extract by ammonium sulfate for mannitol production in cashew apple juice. Biocatalysis and Agricultural Biotechnology, 2(1), 69–75. https://doi.org/10.1016/j.bcab.2012.11.003

    Article  Google Scholar 

  85. Carvalheiro, F., Moniz, P., Duarte, L. C., Esteves, M. P., & Gírio, F. M. (2011). Mannitol production by lactic acid bacteria grown in supplemented carob syrup. Journal of Industrial Microbiology and Biotechnology, 38(1), 221–227. https://doi.org/10.1007/s10295-010-0823-5

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, M., Gu, L., Cheng, C., Zhu, J., Wu, H., Ma, J., … Ouyang, P. (2017). High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate. Journal of Industrial Microbiology and Biotechnology, 44(8), 1237–1244. https://doi.org/10.1007/s10295-017-1953-9

  87. Cao, H., Yue, M., Liu, G., Du, Y., & Yin, H. (2018). Microbial production of mannitol by Lactobacillus brevis 3–A5 from concentrated extract of Jerusalem artichoke tubers. Biotechnology and Applied Biochemistry, 65(3), 484–489. https://doi.org/10.1002/bab.1590

    Article  CAS  PubMed  Google Scholar 

  88. Hijosa-Valsero, M., Garita-Cambronero, J., Paniagua-García, A. I., & Díez-Antolínez, R. (2021). Mannitol bioproduction from surplus grape musts and wine lees. LWT, 151, 112083. https://doi.org/10.1016/j.lwt.2021.112083

    Article  CAS  Google Scholar 

  89. Sahin, A. W., Rice, T., Zannini, E., Axel, C., Coffey, A., Lynch, K. M., & Arendt, E. K. (2019). Leuconostoc citreum TR116: In-situ production of mannitol in sourdough and its application to reduce sugar in burger buns. International Journal of Food Microbiology, 302, 80–89. https://doi.org/10.1016/j.ijfoodmicro.2018.06.026

    Article  CAS  PubMed  Google Scholar 

  90. Rice, T., Sahin, A. W., Lynch, K. M., Arendt, E. K., & Coffey, A. (2020). Isolation, characterisation and exploitation of lactic acid bacteria capable of efficient conversion of sugars to mannitol. International Journal of Food Microbiology, 321, 108546. https://doi.org/10.1016/j.ijfoodmicro.2020.108546

    Article  CAS  PubMed  Google Scholar 

  91. Ma, S., Wang, Z., Guo, X., Wang, F., Huang, J., Sun, B., & Wang, X. (2021). Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges—A review. Food Chemistry, 360, 130038. https://doi.org/10.1016/j.foodchem.2021.130038

    Article  CAS  PubMed  Google Scholar 

  92. Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., & Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103–113. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  93. De Vuyst, L., Comasio, A., & Kerrebroeck, S. Van. (2021). Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Critical Reviews in Food Science and Nutrition, 0, 1–33. https://doi.org/10.1080/10408398.2021.1976100

  94. Sahin, A. W., Rice, T., Zannini, E., Lynch, K. M., Coffey, A., & Arendt, E. K. (2019). The incorporation of sourdough in sugar-reduced biscuits: A promising strategy to improve techno-functional and sensory properties. European Food Research and Technology, 245(9), 1841–1854. https://doi.org/10.1007/s00217-019-03302-3

    Article  CAS  Google Scholar 

  95. Chen, C., Lu, Y., Yu, H., Chen, Z., & Tian, H. (2019). Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. Food Bioscience, 27, 30–36. https://doi.org/10.1016/j.fbio.2018.11.006

    Article  CAS  Google Scholar 

  96. Gaspar, P., Neves, A. R., Gasson, M. J., Shearman, C. A., & Santos, H. (2011). High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD+ cofactor recycling. Applied and Environmental Microbiology, 77(19), 6826–6835. https://doi.org/10.1128/AEM.05544-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wisselink, H. W., Moers, A. P. H. A., Mars, A. E., Hoefnagel, M. H. N., De Vos, W. M., & Hugenholtz, J. (2005). Overproduction of heterologous mannitol 1-phosphatase: A key factor for engineering mannitol production by Lactococcus lactis. Applied and Environmental Microbiology, 71(3), 1507–1514. https://doi.org/10.1128/AEM.71.3.1507-1514.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xiao, H., Wang, Q., Bang-Berthelsen, C. H., Jensen, P. R., & Solem, C. (2020). Harnessing Adaptive Evolution to Achieve Superior Mannitol Production by Lactococcus lactis Using Its Native Metabolism. Journal of Agricultural and Food Chemistry, 68(17), 4912–4921. https://doi.org/10.1021/acs.jafc.0c00532

    Article  CAS  PubMed  Google Scholar 

  99. Xiao, H., Bang-Berthelsen, C. H., Jensen, P. R., & Solem, C. (2021). Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis. Applied and Environmental Microbiology, 87(16), 1–14. https://doi.org/10.1128/AEM.00779-21

    Article  Google Scholar 

  100. Zhang, Z., Cheng, W. Y., Ju, X. Y., & Jin, H. X. (2014). The Effect of Dextransucrase Gene Inactivation on Mannitol Production by Leuconostoc mesenteroides. Indian Journal of Microbiology, 55(1), 35–40. https://doi.org/10.1007/s12088-014-0503-7

    Article  CAS  Google Scholar 

  101. Papagianni, M., & Legiša, M. (2014). Increased mannitol production in Lactobacillus reuteri ATCC 55730 production strain with a modified 6-phosphofructo-1-kinase. Journal of Biotechnology, 181, 20–26. https://doi.org/10.1016/j.jbiotec.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  102. Kaup, B., Bringer-Meyer, S., & Sahm, H. (2004). Metabolic engineering of Escherichia coli: Construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Applied Microbiology and Biotechnology, 64(3), 333–339. https://doi.org/10.1007/s00253-003-1470-9

    Article  CAS  PubMed  Google Scholar 

  103. Heuser, F., Marin, K., Kaup, B., Bringer, S., & Sahm, H. (2009). Improving D-mannitol productivity of Escherichia coli: Impact of NAD, CO2 and expression of a putative sugar permease from Leuconostoc pseudomesenteroides. Metabolic Engineering, 11(3), 178–183. https://doi.org/10.1016/j.ymben.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  104. Reshamwala, S. M. S., Pagar, S. K., Velhal, V. S., Maranholakar, V. M., Talangkar, V. G., & Lali, A. M. (2014). Construction of an efficient Escherichia coli whole-cell biocatalyst for D-mannitol production. Journal of Bioscience and Bioengineering, 118(6), 628–631. https://doi.org/10.1016/j.jbiosc.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  105. Madsen, M. A., Semerdzhiev, S., Amtmann, A., & Tonon, T. (2018). Engineering Mannitol Biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 Using a Green Algal Fusion Protein. ACS Synthetic Biology, 7(12), 2833–2840. https://doi.org/10.1021/acssynbio.8b00238

  106. Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  107. Singh, N., & Gaur, S. (2021). GRAS Fungi: A New Horizon in Safer Food Product. In X. Dai, M. Sharma, & J. Chen (Eds.), Fungi in Sustainable Food Production (First., pp. 27–37). Springer. https://doi.org/10.1007/978-3-030-64406-2_3

Download references

Funding

This work was supported by the Instituto Politécnico Nacional (Mexico) through the research project SIP-20211198. JGMM thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) for Master Fellowship support (grant number: 735208).

Author information

Authors and Affiliations

Authors

Contributions

JGMM: original idea, conceptualization, literature search and data analysis, original draft. IC: critical revision of the work and editing. EDP: critical revision of the work and editing.

Corresponding author

Correspondence to Enrique Durán-Páramo.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no competing interests to declare relevant to this article's content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Miranda, J.G., Chairez, I. & Durán-Páramo, E. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review. Appl Biochem Biotechnol 194, 2762–2795 (2022). https://doi.org/10.1007/s12010-022-03836-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03836-5

Keywords

Navigation