Skip to main content
Log in

A Distance-Based Microfluidic Paper-Based Biosensor for Glucose Measurements in Tear Range

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The prevalence of diabetes has increased over the past years. Therefore, developing minimally invasive, user-friendly, and cost-effective glucose biosensors is necessary especially in low-income and developing countries. Cellulose paper–based analytical devices have attracted the attention of many researchers due to affordability, not requiring trained personnel, and complex equipment. This paper describes a microfluidic paper-based analytical device (μPAD) for detecting glucose concentration in tear range with the naked eye. The paper-based biosensor fabricated by laser CO2; and glucose oxidase/horseradish peroxidase (GOx/HRP) enzyme solution coupled with tetramethylbenzidine (TMB) were utilized as reagents. A sample volume of 10 μl was needed for the biosensor operation and the results were observable within 5 min. The color intensity–based and distance-based results were analyzed by ImageJ and Tracker to evaluate the device performance. Distance-based results showed a linear behavior in 0.1–1.2 mM with an R2 = 0.9962 and limit of detection (LOD) of 0.1 mM. The results could be perceived by the naked eye without needing additional equipment or trained personnel in a relatively short time (3–5 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

All useful data obtained during the study are available.

References

  1. Martinkova, P., & Pohanka, M. (2015). Biosensors for blood glucose and diabetes diagnosis: Evolution, construction, and current status. Analytical Letters, 48(16), 2509–2532. https://doi.org/10.1080/00032719.2015.1043661

    Article  CAS  Google Scholar 

  2. Turner, A., & Fragkou, V. (2008). Commercial biosensors for diabetes. In Taylor & Francis Group (pp. 41–64). https://doi.org/10.1201/9781584889755.ch2

  3. Kim, S., Jeon, H. J., Park, S., Lee, D. Y., & Chung, E. (2020). Tear glucose measurement by reflectance spectrum of a nanoparticle embedded contact lens. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-65103-z

    Article  CAS  Google Scholar 

  4. World Health Organization. (2020). Health topics, diabetes. https://www.who.int/health-topics/diabetes

  5. Yoo, E. H., & Lee, S. Y. (2010). Glucose biosensors: An overview of use in clinical practice. Sensors, 10(5), 4558–4576. https://doi.org/10.3390/s100504558

    Article  PubMed  PubMed Central  Google Scholar 

  6. Radhakumary, C., & Sreenivasan, K. (2011). Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Analytical Chemistry, 83(7), 2829–2833. https://doi.org/10.1021/ac1032879

    Article  CAS  PubMed  Google Scholar 

  7. Lee, S. H., Cho, Y. C., & Bin Choy, Y. (2019). Noninvasive self-diagnostic device for tear collection and glucose measurement. Scientific Reports, 9(1), 1–8. https://doi.org/10.1038/s41598-019-41066-8

    Article  CAS  Google Scholar 

  8. Jung, D. G., Jung, D., & Kong, S. H. (2017). A lab-on-a-chip-based non-invasive optical sensor for measuring glucose in saliva. Sensors (Switzerland), 17(11), 1–12. https://doi.org/10.3390/s17112607

    Article  CAS  Google Scholar 

  9. Aihara, M., Kubota, N., Minami, T., Shirakawa, R., Sakurai, Y., Hayashi, T., … Kadowaki, T. (2021). Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood. Journal of Diabetes Investigation, 12(2), 266–276. https://doi.org/10.1111/jdi.13344

  10. Dominguez, R. B., Orozco, M. A., Chávez, G., & Márquez-Lucero, A. (2017). The evaluation of a low-cost colorimeter for glucose detection in salivary samples. Sensors (Switzerland), 17(11), 19–21. https://doi.org/10.3390/s17112495

    Article  CAS  Google Scholar 

  11. Lane, J. D., Krumholz, D. M., Sack, R. A., & Morris, C. (2006). Tear glucose dynamics in diabetes mellitus. Current Eye Research, 31(11), 895–901. https://doi.org/10.1080/02713680600976552

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, J., Hodge, W., Hutnick, C., & Wang, X. (2011). Noninvasive diagnostic devices for diabetes through measuring tear glucose. Journal of Diabetes Science and Technology, 5(1), 166–172. https://doi.org/10.1177/193229681100500123

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32(7), 363–371. https://doi.org/10.1016/j.tibtech.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  14. La Belle, J. T., Adams, A., Lin, C. E., Engelschall, E., Pratt, B., & Cook, C. B. (2016). Self-monitoring of tear glucose: The development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose. Chemical Communications, 52(59), 9197–9204. https://doi.org/10.1039/c6cc03609k

    Article  PubMed  Google Scholar 

  15. Gabriel, E. F. M., Garcia, P. T., Lopes, F. M., & Coltro, W. K. T. (2017). Paper-based colorimetric biosensor for tear glucose measurements. Micromachines, 8(4). https://doi.org/10.3390/mi8040104

  16. Demirci, U., Khademhosseini, A., Langer, R., & Blander, J. (2012). Microfluidic technologies for human health. World Scientific. https://doi.org/10.1142/8469

    Article  Google Scholar 

  17. Selmi, M., Gazzah, M. H., & Belmabrouk, H. (2017). Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-06204-0

    Article  CAS  Google Scholar 

  18. Nishat, S., Jafry, A. T., Martinez, A. W., & Awan, F. R. (2021). Paper-based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators, B: Chemical, 336, 129681. https://doi.org/10.1016/j.snb.2021.129681

    Article  CAS  Google Scholar 

  19. Walji, N. (2015). Characterization of fluid flow in paper-based microfluidic devices. Master thesis, University of Ontario, Canada.

  20. Ghosh, R., Gopalakrishnan, S., Savitha, R., & Renganathan, T. (2019). Fabrication of laser printed microfluidic paper-based analytical devices ( LP- µ PADs ) for point-of- care applications, (May), 1–11. https://doi.org/10.1038/s41598-019-44455-1

  21. Liu, S., Su, W., & Ding, X. (2016). A review on microfluidic paper-based analytical devices for glucose detection. Sensors (Basel, Switzerland), 16(12). https://doi.org/10.3390/s16122086

  22. Chandra Sekar, N., Mousavi Shaegh, S. A., Ng, S. H., Ge, L., & Tan, S. N. (2014). A paper-based amperometric glucose biosensor developed with Prussian Blue-modified screen-printed electrodes. Sensors and Actuators, B: Chemical, 204, 414–420. https://doi.org/10.1016/j.snb.2014.07.103

    Article  CAS  Google Scholar 

  23. Songok, J., & Toivakka, M. (2016). Enhancing capillary-driven flow for paper-based microfluidic channels. ACS Applied Materials and Interfaces, 8(44), 30523–30530. https://doi.org/10.1021/acsami.6b08117

    Article  CAS  PubMed  Google Scholar 

  24. Kugimiya, A., Fujikawa, A., Jiang, X., Fan, Z. H., Nishida, T., Kohda, J., … Takano, Y. (2020). Microfluidic paper-based analytical device for histidine determination. Applied Biochemistry and Biotechnology, 192(3), 812–821. https://doi.org/10.1007/s12010-020-03365-z

  25. Abdollahi-Aghdam, A., Majidi, M. R., & Omidi, Y. (2018). Microfluidic paper-based analytical devices (µPADs) for fast and ultrasensitive sensing of biomarkers and monitoring of diseases. BioImpacts, 8(4), 237–240. https://doi.org/10.15171/bi.2018.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, X., Chen, J., Wang, F., Xiang, X., Luo, M., Ji, X., & He, Z. (2012). Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosensors and Bioelectronics, 35(1), 363–368. https://doi.org/10.1016/j.bios.2012.03.018

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, M., Yang, M., & Zhou, F. (2014). Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosensors and Bioelectronics, 55, 39–43. https://doi.org/10.1016/j.bios.2013.11.065

    Article  CAS  PubMed  Google Scholar 

  28. Kuek Lawrence, C. S., Tan, S. N., & Floresca, C. Z. (2014). A “green” cellulose paper based glucose amperometric biosensor. Sensors and Actuators, B: Chemical, 193, 536–541. https://doi.org/10.1016/j.snb.2013.11.054

    Article  CAS  Google Scholar 

  29. Li, J. H., Deng, X. L., Zhao, Y. L., Zhang, X. Y., & Bai, Y. P. (2021). Paper-based enzymatic colorimetric assay for rapid malathion detection. Applied Biochemistry and Biotechnology, 193(8), 2534–2546. https://doi.org/10.1007/s12010-021-03531-x

    Article  CAS  PubMed  Google Scholar 

  30. Noviana, E., Ozer, T., Carrell, C. S., Link, J. S., Mcmahon, C., Jang, I., & Henry, C. S. (2020). Micro fl uidic paper-based analytical devices : From design to applications. https://doi.org/10.1021/acs.chemrev.0c01335

  31. Morbioli, G. G., Mazzu-Nascimento, T., Stockton, A. M., & Carrilho, E. (2017). Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Analytica Chimica Acta, 970, 1–22. https://doi.org/10.1016/j.aca.2017.03.037

    Article  CAS  PubMed  Google Scholar 

  32. Gabriel, E. F. M., Garcia, P. T., Cardoso, T. M. G., Lopes, F. M., Martins, F. T., & Coltro, W. K. T. (2016). Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. The Analyst, 141(15), 4749–4756. https://doi.org/10.1039/c6an00430j

    Article  CAS  PubMed  Google Scholar 

  33. Soni, A., & Jha, S. K. (2015). A paper strip based non-invasive glucose biosensor for salivary analysis. Biosensors and Bioelectronics, 67, 763–768. https://doi.org/10.1016/j.bios.2014.09.042

    Article  CAS  PubMed  Google Scholar 

  34. Nery, E. W., & Kubota, L. T. (2013). Sensing approaches on paper-based devices: A review. Analytical and Bioanalytical Chemistry, 405(24), 7573–7595. https://doi.org/10.1007/s00216-013-6911-4

    Article  CAS  PubMed  Google Scholar 

  35. Fatoni, A., Anggraeni, M. D., & Dwiasi, D. W. (2016). Simple colorimetric glucose biosensor using chitosan cryogel supporting material. AIP Conference Proceedings, 1746. https://doi.org/10.1063/1.4953954

  36. Jin, L., Meng, Z., Zhang, Y., Cai, S., Zhang, Z., Li, C., … Shen, Y. (2017). Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Applied Materials and Interfaces, 9(11), 10027–10033. https://doi.org/10.1021/acsami.7b01616

  37. Lewis, G. G., Ditucci, M. J., & Phillips, S. T. (2012). Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angewandte Chemie - International Edition, 51(51), 12707–12710. https://doi.org/10.1002/anie.201207239

    Article  CAS  PubMed  Google Scholar 

  38. Cate, D. M., Dungchai, W., Cunningham, J. C., Volckens, J., & Henry, C. S. (2013). Simple, distance-based measurement for paper analytical devices. Lab on a Chip, 13(12), 2397–2404. https://doi.org/10.1039/c3lc50072a

    Article  CAS  PubMed  Google Scholar 

  39. Tian, T., Li, J., Song, Y., Zhou, L., Zhu, Z., & Yang, C. J. (2016). Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab on a Chip, 16(7), 1139–1151. https://doi.org/10.1039/c5lc01562f

    Article  CAS  PubMed  Google Scholar 

  40. He, Y., Wu, Y., Fu, J. Z., & Wu, W. B. (2015). Fabrication of paper-based microfluidic analysis devices: A review. RSC Advances, 5(95), 78109–78127. https://doi.org/10.1039/c5ra09188h

    Article  CAS  Google Scholar 

  41. Yetisen, A. K., Akram, M. S., & Lowe, C. R. (2013). Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip, 13(12), 2210–2251. https://doi.org/10.1039/c3lc50169h

    Article  CAS  PubMed  Google Scholar 

  42. Fan, Y., Liu, S., Gao, K., & Zhang, Y. (2018). Fully enclosed paper-based microfluidic devices using bio-compatible adhesive seals. Microsystem Technologies, 24(4), 1783–1787. https://doi.org/10.1007/s00542-017-3528-0

    Article  CAS  Google Scholar 

  43. Kang, B. H., Park, M., & Jeong, K. H. (2017). Colorimetric Schirmer strip for tear glucose detection. Biochip Journal, 11(4), 294–299. https://doi.org/10.1007/s13206-017-1405-7

    Article  CAS  Google Scholar 

  44. Santana-Jiménez, L. A., Márquez-Lucero, A., Osuna, V., Estrada-Moreno, I., & Dominguez, R. B. (2018). Naked-eye detection of glucose in saliva with bienzymatic paper-based sensor. Sensors (Switzerland), 18(4), 1–12. https://doi.org/10.3390/s18041071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The team acknowledges the generous funding provided by the University of Isfahan, Isfahan, Iran.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the University of Isfahan.

Author information

Authors and Affiliations

Authors

Contributions

Samira Allameh was an MSc. student in biomedical engineering and she did this study as a master thesis under the supervision of Dr. Mohsen Rabbani. Samira wrote the manuscript and Mohsen modified and prepared it for publication.

Corresponding author

Correspondence to Mohsen Rabbani.

Ethics declarations

Ethics Approval

This research does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

This research does not contain any studies with human participants performed by any of the authors.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allameh, S., Rabbani, M. A Distance-Based Microfluidic Paper-Based Biosensor for Glucose Measurements in Tear Range. Appl Biochem Biotechnol 194, 2077–2092 (2022). https://doi.org/10.1007/s12010-022-03817-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03817-8

Keywords

Navigation