Skip to main content

Advertisement

Log in

Myrobalan-Mediated Nanocolloids in Controlling Marine Pathogens

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aquaculture production is affected by disease outbreak, which affects the production, profitability, and sustainability of the global aquaculture industry. Antibiotics have been widely used to control various infectious diseases. Indiscriminate usage of antibiotics results in development of antibiotic resistance in pathogens. This current study aims to synthesize myrobalan-mediated green silver nanocolloids (MBNc) by using the extract of three myrobalans and characterized by using various physiochemical techniques. Antibacterial potential of MBNc was screened in vibriosis causing pathogens (V. harveyi, V. alginolyticus, V. Parahaemolyticus), and foodborne pathogen S. haemolyticus, isolated from infected fish. Further, the presence of ESBL genes including CTX-M-15 and Amp C was analyzed in control and MBNc-treated strains. From our studies, it was observed that MBNc was very effective in controlling the growth. MBNc confirmed the anti-biofilm property in all tested marine pathogens and effectively abolish the genes encoding CTX-M-15 in tested pathogens. Thus, MBNc can be formulated to control the growth of marine pathogens and it can be used as an alternative to antibiotics to prevent infection in cage culturing and aquafarming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Data will be available on request.

Code Availability

Not applicable.

References

  1. Hosomi, R., Yoshida, M., & Fukunaga, K. (2012). Seafood consumption and components for health. Global Journal of Health Science. https://doi.org/10.5539/gjhs.v4n3p72

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tidwell, J. H. & Allan, G. L. (2001). Fish as food: aquaculture's contribution. Ecological and economic impacts and contributions of fish farming and capture fisheries. EMBO Rep, 2(11), 958–963. https://doi.org/10.1093/embo-reports/kve236

  3. Lafferty, K., Harvell, C., Conrad, J., et al. (2015). Infectious diseases affect marine fisheries and aquaculture economics. Annual Review of Marine Science, 7, 471–496. https://doi.org/10.1146/annurev-marine-010814-015646

    Article  PubMed  Google Scholar 

  4. Newton, A., Kendall, M., Vugia, D., et al. (2012). Increasing rates of vibriosis in the United States, 1996–2010: Review of surveillance data from 2 systems. Clinical Infectious Diseases, 54, S391–S395. https://doi.org/10.1093/cid/cis243

    Article  PubMed  Google Scholar 

  5. Osunla, C., & Okoh, A. (2017). Vibrio pathogens: A public health concern in rural water resources in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 14, 1188. https://doi.org/10.3390/ijerph14101188

    Article  CAS  PubMed Central  Google Scholar 

  6. Austin, B., & Zhang, X. (2006). Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43, 119–124. https://doi.org/10.1111/j.1472-765x.2006.01989.x

    Article  CAS  PubMed  Google Scholar 

  7. Liu, C., Cheng, W., Hsu, J., & Chen, J. (2004). Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms, 61, 169–174. https://doi.org/10.3354/dao061169

    Article  CAS  PubMed  Google Scholar 

  8. Lee, D., Moon, S., Lee, S., et al. (2008). Septic shock due to Vibrio alginolyticus in a cirrhotic patient: The first case in Korea. Yonsei Medical Journal, 49, 329. https://doi.org/10.3349/ymj.2008.49.2.329

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parthasarathy, S., Das, S., & Kumar, A. (2016). Occurrence of pathogenic Vibrio parahaemolyticus in crustacean shellfishes in coastal parts of Eastern India. Veterinary World, 9, 330–336. https://doi.org/10.14202/vetworld.2016.330-336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Czekaj, T., Ciszewski, M., & Szewczyk, E. (2015). Staphylococcus haemolyticus – An emerging threat in the twilight of the antibiotics age. Microbiology, 161, 2061–2068. https://doi.org/10.1099/mic.0.000178

    Article  CAS  PubMed  Google Scholar 

  11. Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109, 309–318. https://doi.org/10.1179/2047773215y.0000000030

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barros, C., Fulaz, S., Stanisic, D., & Tasic, L. (2018). Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics, 7, 69. https://doi.org/10.3390/antibiotics7030069

    Article  CAS  PubMed Central  Google Scholar 

  13. Ranjani, S., Pradeep, P., Vimalkumar, U., Ramesh Kumar, V., & Hemalatha, S. (2021). Pungent antiinfective nanocolloids manipulate growth, biofilm formation and CTX-M-15 gene expression in pathogens causing vibriosis. Aquaculture International, 29, 859–869.

    Article  Google Scholar 

  14. Hemamalini, V., Kavitha, V., & Ramachandran, S. (2015). In vitro antibiogram pattern of Staphylococcus aureus isolated from wound infection and molecular analysis of mecA gene and restriction sites in methicillin resistant Staphylococcus aureus. Journal of Advanced Pharmaceutical Technology and Research, 6, 170. https://doi.org/10.4103/2231-4040.165019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ranjani, S., Shariq Ahmed, M., Ruckmani, K., & Hemalatha, S. (2019). Green nanocolloids control multi drug resistant pathogenic bacteria. Journal of Cluster Science, 31, 861–866. https://doi.org/10.1007/s10876-019-01694-6

    Article  CAS  Google Scholar 

  16. Ranjani, S., Tamanna, K., & Hemalatha, S. (2020). Triphala green nano colloids: Synthesis, characterization and screening biomarkers. Applied Nanoscience, 10, 1269–1279. https://doi.org/10.1007/s13204-019-01208-w

    Article  CAS  Google Scholar 

  17. Ranjani, S., Faridha Begum, I., Tasneem, I. K., Senthil Kumar, N., & Hemalatha, S. (2020). S. Silver decorated green nanocolloids as potent antibacterial and antibiofilm agent against antibiotic resistant organisms isolated from tannery effluent. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1811326

    Article  Google Scholar 

  18. Ranjani, S. A., Matheen, A., Jenish, A., & Hemalatha, S. (2021). Nanotechnology derived natural poly bio-silver nanoparticles as a potential alternate biomaterial to protect against human pathogens. Materials Letters, 130555.https://doi.org/10.1016/j.matlet.2021.130555

  19. Harborne, J. (1980). Phytochemical methods. Springer.

    Book  Google Scholar 

  20. Yemm, E., & Willis, A. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57, 508–514. https://doi.org/10.1042/bj0570508

    Article  CAS  PubMed Central  Google Scholar 

  21. Akther, T., & Hemalatha, S. (2019). Mycosilver nanoparticles: Synthesis, characterization and its efficacy against plant pathogenic fungi. BioNanoScience, 9, 296–301. https://doi.org/10.1007/s12668-019-0607-y

    Article  Google Scholar 

  22. Akther, T., Ranjani, S., & Hemalatha, S. (2021). Nanoparticles engineered from endophytic fungi (Botryosphaeria rhodina) against ESBL-producing pathogenic multidrug-resistant E. coli. Environmental Sciences Europe, 33, 83. https://doi.org/10.1186/s12302-021-00524-9

    Article  CAS  Google Scholar 

  23. Akther, T., Khan, M. S., & Hemalatha, S. (2020). Biosynthesis of silver nanoparticles via fungal cell filtrate and their anti-quorum sensing against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2020.104365

    Article  Google Scholar 

  24. Ranjani, S., Das, R., Shariq Ahmed, M., Lalnunmawii, E., Nachimuthu, S., Ruckmani, K., & Hemalatha, S. (2020). Myco-nanocolloids manipulate growth, biofilm formation and virulence genes in UTI causing E. coli. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1852426

    Article  Google Scholar 

  25. Ranjani, S., Faridha Begum, I., Santhoshini, J., Senthil Kumar, N., Ruckmani, K., & Hemalatha, S. (2020). Mimosa pudica floral nanoparticles: a potent antibiotic resistance breaker. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1852429

    Article  Google Scholar 

  26. Ranjani, S. M., Sheik Meeran, S., Prakash, S. P., Mohammad, W., Kandasamy, R., & Srinivasan, H. (2020). Multi potent aromatic nano colloid: Synthesis, characterization and applications. AMB Express, 10(1), 168. https://doi.org/10.1186/s13568-020-01104-5

    Article  CAS  Google Scholar 

  27. Mittal, L., Ranjani, S., Shariq Ahmed, M., Jeya Shree, T., Akther, T., Poompavai, S., Camarillo, I. G., GowriSree, V., Sundararajan, R., & Hemalatha, S. (2020). Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1812644

    Article  Google Scholar 

  28. Shariq Ahmed, M., Soundhararajan, R., Akther, T., et al. (2019). Biogenic AgNPs synthesized via endophytic bacteria and its biological applications. Environmental Science and Pollution Research, 26, 26939–26946. https://doi.org/10.1007/s11356-019-05869-6

    Article  CAS  PubMed  Google Scholar 

  29. Sah, S., Rasool, U., & Hemalatha, S. (2020). Andrographis paniculata extract inhibit growth, biofilm formation in multidrug resistant strains of Klebsiella pneumoniae. Journal of Traditional and Complementary Medicine, 10, 599–604. https://doi.org/10.1016/j.jtcme.2019.02.006

    Article  PubMed  Google Scholar 

  30. Shariq Ahmed, M. Soundhararajan, R. Akther, T. Kashif, M. Khan, J. Waseem, M. & Srinivasan, H. (2019) Biogenic AgNPs synthesized via endophytic bacteria and its biological applications. Environmental Science and Pollution Research 26, 26939–26946. https://doi.org/10.1007/s11356-019-05869-6

  31. Rasool, U., Priya, S., Parveen, A., et al. (2018). Efficacy of Andrographis paniculata against extended spectrum β-lactamase (ESBL) producing E coli. BMC Complementary and Alternative Medicine. https://doi.org/10.1186/s12906-018-2312-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hasan, M., Islam, M., & Islam, M. (2016). Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. International Current Pharmaceutical Journal, 5, 14–21. https://doi.org/10.3329/icpj.v5i2.26441

    Article  CAS  Google Scholar 

  33. Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5, 93. https://doi.org/10.3390/medicines5030093

    Article  CAS  PubMed Central  Google Scholar 

  34. SabihaSulthana, H. B., Ranjani, S., & Hemalatha, S. (2020). Comparison of efficacy of nanoparticles synthesized from leaves and flowers of Russelia equisitiformis. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1862218

    Article  Google Scholar 

  35. Sai Nivetha, S., Ranjani, S., & Hemalatha, S. (2020). Synthesis and application of silver nanoparticles using Cissus quadrangularis. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1862219

    Article  Google Scholar 

  36. Chouhan, N. (2018). Silver nanoparticles: Synthesis, characterization and applications. Silver Nanoparticles - Fabrication, Characterization and Applications. https://doi.org/10.5772/intechopen.75611

    Article  Google Scholar 

  37. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/ijn.s121956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Slavin, Y., Asnis, J., Häfeli, U., & Bach, H. (2017). Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology. https://doi.org/10.1186/s12951-017-0308-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sanchooli, N., Saeidi, S., Barani, H. K., & Sanchooli, E. (2018). In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iranian journal of microbiology, 10(6), 400–408.

    PubMed  PubMed Central  Google Scholar 

  40. Dakal, T., Kumar, A., Majumdar, R., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shah, S., Gaikwad, S., Nagar, S., et al. (2019). Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling, 35, 34–49. https://doi.org/10.1080/08927014.2018.1563686

    Article  CAS  PubMed  Google Scholar 

  42. Singh, M., Mallick, A., Banerjee, M., & Kumar, R. (2016). Loss of outer membrane integrity in Gram-negative bacteria by silver nanoparticles loaded with Camellia sinensis leaf phytochemicals: Plausible mechanism of bacterial cell disintegration. Bulletin of Materials Science, 39, 1871–1878. https://doi.org/10.1007/s12034-016-1317-5

    Article  CAS  Google Scholar 

  43. Peterson, C., Denniston, K., & Chopra, D. (2017). Therapeutic uses of triphala in ayurvedic medicine. The Journal of Alternative and Complementary Medicine, 23, 607–614. https://doi.org/10.1089/acm.2017.0083

    Article  PubMed  PubMed Central  Google Scholar 

  44. Charannya, S., Duraivel, D., Padminee, K., et al. (2018). Comparative evaluation of antimicrobial efficacy of silver nanoparticles and 2% chlorhexidine gluconate when used alone and in combination assessed using agar diffusion method: An In vitro study. Contemporary Clinical Dentistry, 9, 204. https://doi.org/10.4103/ccd.ccd_869_17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to B.S. Abdur Rahman Institute of Science & Technology, Chennai, for providing research facilities in school of life sciences.

Funding

The authors gratefully acknowledge the Ministry of Science and Technology, Department of Science and Technology (KIRAN Division) (GoI), New Delhi. (Ref No. DST/WOS-B/2018/1583-HFN (G)) and ASEAN University network (AUN)/Southeast Asia Engineering Education Development Network (SEED)/Japan International Cooperation Agency (JICA) SPRAC (SN042/MI.KU/2020).

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed research. SR and PP conducted experiments. PR contributed pathogenic strains. SH and PR analyzed data. All authors wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjani, S., Parthasarathy, P., Rameshkumar, P. et al. Myrobalan-Mediated Nanocolloids in Controlling Marine Pathogens. Appl Biochem Biotechnol 194, 1120–1135 (2022). https://doi.org/10.1007/s12010-022-03816-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03816-9

Keywords

Navigation