Skip to main content
Log in

Kinetic Study of Levulinic Acid from Spirulina platensis Residue

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid–liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous–irreversible–1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data and materials generated are included in this published article and are available upon reasonable request.

Code Availability

Glu: Glucose.

5-HMF: 5-hydrovymethylfurfural.

LA: Levulinic acid.

Ri: Reaction rate of i [mol/L/min].

ki: Coefficient of reaction kinetic of i [1/min].

Ci: Concentration of I [mol/L].

Ai: Arrhenius constant of i.

Ei: Activation energy of I [kJ/mol].

R: Ideal gas constant [J/K/mol].

T: Temperature [K].

SSE: Sum of squared error.

References

  1. Galletti, A.M.R., Antonetti, C., Licursi, D., Mussi, L., Balestri, E., and Lardicci, C. (2019) AIDIC, 74, 103-108

  2. Antonetti, C., Licurci, D., Fulignati, S., Valentini, G., and Galetti, A.M.R. (2016) Catalyst, 6, 196

  3. Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A., & Pugazhendhi, A., (2020) J. Cleaner Prod., 253, 119770

  4. Listyaningrum, N. B., Azis, M.M., Sarto, Rosdi, A. N., and Harun, M. R. (2021) AJChE 21(1), 11–18.

  5. Aharonovich, E.B., Zandany, A., Saady, A., Tahan, Y.K., Yehoshua, Y., and Gedanken, A. (2020) Bioresour. Technol. Rep. 11, 100514.

  6. Jeong, G.T. and Kim, S.K. (2021) Fuel 283, 118907.

  7. Rackemann, D.W. (2014), PhD Disertasi, Queensland University of Technology.

  8. Signoretto, M., Taghavi, S., Ghedini, E., and Menegazzo, F. (2019) Molecules 24, 1-20

  9. Nautiyal, P., Subramanian, K.A., and Dastidar, M.G. (2014) Fuel 135, 228-234

  10. Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Aziz, M., Hayashi, J.I., and Budiman, A. (2020) IJTech 11(3), 522–531.

  11. Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H. and Budiman, A. (2019) IJRED 8 (2), 133–140.

  12. Aikawa, S., Hsin Ho, S., Nakanishi, A., Shu Chang, J., Hasunuma, T., and Kondo, A., (2015) Biotechnology Journal. 10, 886-898

  13. Izumi, Y., Aikawa, S., Matsuda, F., and Hasunima, T. (2013) Journal of Chromatography. B. 930, 90-97

  14. Vonshak A. (1997) Spirulina: growth, physiology & biochemistry. In: Spirulina platensis (Arthrospira): physiology, cell biology and biotechnology, Taylor and Francis, London,

  15. Vernes, L., Abert-Vian, M., El Maataoui, M., Tao, Y., Bornard, I. and Chemat, F. (2019) Ultrason. Sonochem.

  16. Halim, R., Harun, R., Danquah M. K and Webley, P.A. (2012) Applied Energy 91, 116-121

  17. Khan, M. I., Shin J. H., and Kim, J. D. (2018) Microb. Cell Fact., 17–36.

  18. Girisuta, B., Janssen, L. P. B. M., and Heeres, H.J. (2007) Industrial and Engineering Chemistry Research 46, 1696-1708

  19. Chun, C., Xiaojian, M., and Peilin, C. (2009) Chinese. Journal of Chemical Engineering 17(5), 835-839

  20. L. Kupiainen, J. Ahola, J. Tanskanen (2011) Chemical Engineering Research and Design 89 (2011) 2706-2713

  21. Ahlkvist, J. (2014), VMC-KBC Umeå , Umeå, Sweden, ISBN: 978-91-7459-798-1

  22. Morone, A., Apte, M., and Pandey, R.A. (2015) Renewable and Sustainable Energy Rev., 51, 548-565

  23. Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., and Giorgi, J.B. (2017) Applied Catalysis, A, 539, 70-79

  24. Fang, Q. and Hanna, M.A. (2002) Bioresource. Technology., 81, 187–192

  25. Lopes, E.S., Dominicesa, K.M.C., Lopes, M.S., and Tovar, L.P., Filhoa, R.M. (2017) Chem. Eng. Transact., AIDIC, 57

  26. Kang, M., Kim, S.W., Kim, J.W., Kim, T.H., & Kim, J.S. (2013) Renewable Energy, 54, 173-180

  27. Lee, S.B., Kim, S.K., Hong, Y.K., and Jeong, G.T. (2016) Algal Research 13, 303-310

  28. Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., and Park, D.H. (2015) Bioprocess and Biosystems. Engineering 38, 207–218

  29. Kim, D.H., Lee, S.B., Kim, S.K., Park, D.H., and Jeong, G.T. (2016) Bioenerg.Res.

  30. Saeman, J. F. (1945) Industrial and Engineering Chemistry, 37, 43-53

  31. Girisuta B., Dussan K., Haverty D., Leahy J., and Hayes M. (2013) Chemical Engineering Journal 217, 61-70

  32. Zheng, X., Zhi, Z., Gu, X., Li, X., Zhang, R., and Lu, X. (2017) Fuel 187, 261-268

  33. Fogler, H. S. (2016). Element Of Chemical Reaction Engineering (5th ed.). Prentice Hall.

    Google Scholar 

  34. Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2020) AIP Conf. Proc. 2296, 020064, 1-6

  35. Toif, M.E., Hidayat, M., Rochmadi, and Budiman, A. (2021) BCREC 16 (4), 904–915.

  36. Yang G, Pidko EA, and Hensen EJM (2012) Journal of Catalysis 295, 122–32

  37. Hu L, Lin L, Wu Z, Zhou S, and Liu S. (2017) Renewable and Sustainable Energy Reviews 74, 230–57

  38. Latham, K. G., Ferguson, A., and Donne, S. (2018) SN Applied Science, 2019, 1:54

  39. De Souza, R. L., Yu, H., Rataboul, F., and Essayem, N., (2012) Challenges 3, 212-232

  40. Yu, I. K. M., and Tsang, D. C.W. (2017) Biosource Technology 238, 716-732

  41. Cao, L., Yu, I.K.M., Cho, D.W., Wang, D., Tsang, D.C.W., Zhang, S., Ding, S., Wang, L., and Ok, Y.S. (2019) Bioresource Technology 273, 251-259

Download references

Acknowledgements

The authors are grateful to Ministry of Research and Technology/National Research and Innovation Agency (RISTEK-BRIN), Republic of Indonesia, for the research funding.

Funding

Kementerian Riset,Teknologi dan Pendidikan Tinggi

Author information

Authors and Affiliations

Authors

Contributions

Arief Budiman conceived the main idea of this experiment. Rochmadi designed the detailed experiment. Material preparation, data collection and analysis were performed by Retno Ringgani. The mathematical calculation and modelling were performed by Retno Ringgani and Muhammad Mufti Azis. The first draft of the manuscript was written by Retno Ringgani and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arief Budiman.

Ethics declarations

Ethics Approval

Not applicable.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Consent to Participate

The authors have consented to the submission of this report to the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ringgani, R., Azis, M.M., Rochmadi et al. Kinetic Study of Levulinic Acid from Spirulina platensis Residue. Appl Biochem Biotechnol 194, 2684–2699 (2022). https://doi.org/10.1007/s12010-022-03806-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03806-x

Keywords

Navigation