Skip to main content
Log in

Survival of Microencapsulated Lactococcus lactis Subsp. lactis R7 Applied in Different Food Matrices

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Survival of Lactococcus lactis subsp. lactis R7, microencapsulated with whey and inulin, was analyzed when added to blueberry juice, milk, and cream. For 28 days, cell viability was evaluated for storage (4 °C), simulated gastrointestinal tract (GIT), and thermal resistance. All matrices demonstrated high cell concentration when submitted to GIT (11.74 and 12 log CFU mL−1), except for the blueberry juice. The thermal resistance analysis proved the need for microencapsulation, regardless of the food matrix. The results indicate that L. lactis R7 microcapsules have potential for application in different matrices and development of new probiotic products by thermal processing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Song, A. A. L., In, L. L. A., Lim, S. H. E., & Rahim, R. A. (2017). A review on Lactococcus lactis: From food to factory. Microbial Cell Factories, 16(1), 1–15. https://doi.org/10.1186/s12934-017-0669-x

    Article  CAS  Google Scholar 

  2. Yeung, T. W., Arroyo-Maya, I. J., McClements, D. J., & Sela, D. A. (2016). Microencapsulation of probiotics in hydrogel particles: Enhancing: Lactococcus lactis subsp cremoris LM0230 viability using calcium alginate beads. Food and Function, 7(4), 1797–1804. https://doi.org/10.1039/c5fo00801h

    Article  CAS  PubMed  Google Scholar 

  3. Neffe-Skocińska, K., Rzepkowska, A., Szydłowska, A., & Kołozyn-Krajewska, D. (2018). Trends and possibilities of the use of probiotics in food production. Alternative and Replacement Foods (Vol. 17). https://doi.org/10.1016/B978-0-12-811446-9.00003-4

  4. Praepanitchai, O. A., Noomhorm, A., Anal, A. K., & Potes, M. E. (2019). Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate-based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. BioMed Research International, 2019(3). https://doi.org/10.1155/2019/9768152

  5. Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137, 109682. https://doi.org/10.1016/j.foodres.2020.109682

    Article  CAS  PubMed  Google Scholar 

  6. González-Ferrero, C., Irache, J. M., Marín-Calvo, B., Ortiz-Romero, L., Virto-Resano, R., & González-Navarro, C. J. (2020). Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. Journal of Microencapsulation, 37(3), 242–253. https://doi.org/10.1080/02652048.2020.1724203

    Article  CAS  PubMed  Google Scholar 

  7. Flach, J., van der Waal, M. B., van den Nieuwboer, M., Claassen, E., & Larsen, O. F. A. (2018). The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 58(15), 2570–2584. https://doi.org/10.1080/10408398.2017.1334624

    Article  CAS  PubMed  Google Scholar 

  8. Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344–371. https://doi.org/10.1080/10408398.2014.887055

    Article  CAS  PubMed  Google Scholar 

  9. Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2020). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition, 0(0), 1–22. https://doi.org/10.1080/10408398.2020.1761773

    Article  CAS  Google Scholar 

  10. Ghosh, S., Sarkar, T., Das, A., & Chakraborty, R. (2021). Micro and nanoencapsulation of natural colors: A holistic view. Applied Biochemistry and Biotechnology, 193(11), 3787–3811. https://doi.org/10.1007/S12010-021-03631-8/TABLES/2

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh, S., Sarkar, T., Das, A., & Chakraborty, R. (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT, 153, 112527. https://doi.org/10.1016/J.LWT.2021.112527

    Article  CAS  Google Scholar 

  12. Assadpour, E., & Jafari, S. M. (2019). Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annual Review of Food Science and Technology, 10, 103–131. https://doi.org/10.1146/annurev-food-032818-121641

    Article  CAS  PubMed  Google Scholar 

  13. Eckert, C., Serpa, V. G., Felipe dos Santos, A. C., Marinês da Costa, S., Dalpubel, V., Lehn, D. N., & Volken de Souza, C. F. (2017). Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT - Food Science and Technology, 82, 176–183. https://doi.org/10.1016/j.lwt.2017.04.045

    Article  CAS  Google Scholar 

  14. Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1), 306–312. https://doi.org/10.1016/j.foodres.2011.09.020

    Article  CAS  Google Scholar 

  15. Pinto, S. S., Fritzen-Freire, C. B., Benedetti, S., Murakami, F. S., Petrus, J. C. C., Prudêncio, E. S., & Amboni, R. D. M. C. (2015). Potential use of whey concentrate and prebiotics as carrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Research International, 67, 400–408. https://doi.org/10.1016/j.foodres.2014.11.038

    Article  CAS  Google Scholar 

  16. Jaskulski, I. B., Uecker, J., Bordini, F., Moura, F., Gonçalves, T., Chaves, N. G., … Pieniz, S. (2020). In vivo action of Lactococcus lactis subsp. lactis isolate (R7) with probiotic potential in the stabilization of cancer cells in the colorectal epithelium. Process Biochemistry, 91, 165–171. https://doi.org/10.1016/j.procbio.2019.12.008

  17. Rosolen, M. D., Bordini, F. W., de Oliveira, P. D., Conceição, F. R., Pohndorf, R. S., Fiorentini, Â. M., … Pieniz, S. (2019). Symbiotic microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. Lwt, 115(January), 108411. https://doi.org/10.1016/j.lwt.2019.108411

  18. Seyedain-Ardabili, M., Sharifan, A., & Tarzi, B. G. (2016). The production of synbiotic bread by microencapsulation. Food Technology and Biotechnology, 54(1), 52–59.

    Article  CAS  Google Scholar 

  19. Pimentel, T. C., Madrona, G. S., Garcia, S., & Prudencio, S. H. (2015). Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp paracasei and oligofructose in different package type. LWT - Food Science and Technology, 63(1), 415–422.

    Article  CAS  Google Scholar 

  20. Ortakci, F., & Sert, S. (2012). Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system. Journal of Dairy Science, 95(12), 6918–6925. https://doi.org/10.3168/jds.2012-5710

    Article  CAS  PubMed  Google Scholar 

  21. FAO/WHO. (2002). Guidelines for the evaluation of probiotics in food, 1–11.

  22. Pinto, S. S., Verruck, S., Vieira, C. R. W., Prudêncio, E. S., Amante, E. R., & Amboni, R. D. M. C. (2015). Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments. LWT - Food Science and Technology, 64(2), 1004–1009. https://doi.org/10.1016/j.lwt.2015.07.020

    Article  CAS  Google Scholar 

  23. Ying, D. Y., Schwander, S., Weerakkody, R., Sanguansri, L., Gantenbein-Demarchi, C., & Augustin, M. A. (2013). Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. Journal of Functional Foods, 5(1), 98–105. https://doi.org/10.1016/j.jff.2012.08.009

    Article  CAS  Google Scholar 

  24. Miranda, R. F., de Paula, M. M., da Costa, G. M., Barão, C. E., da Silva, A. C. R., Raices, R. S. L., … Pimentel, T. C. (2019). Orange juice added with L. casei: Is there an impact of the probiotic addition methodology on the quality parameters? Lwt, 106(January), 186–193. https://doi.org/10.1016/j.lwt.2019.02.047

  25. AdebayoTayo, B., & Akpeji, S. (2016). Probiotic viability, physicochemical and sensory properties of probiotic pineapple juice. Fermentation, 2(4).

  26. Shi, L. E., Li, Z. H., Zhang, Z. L., Zhang, T. T., Yu, W. M., Zhou, M. L., & Tang, Z. X. (2013). Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT - Food Science and Technology, 54(1), 147–151. https://doi.org/10.1016/j.lwt.2013.05.027

    Article  CAS  Google Scholar 

  27. Gandomi, H., Abbaszadeh, S., Misaghi, A., Bokaie, S., & Noori, N. (2016). Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT - Food Science and Technology, 69, 365–371. https://doi.org/10.1016/j.lwt.2016.01.064

    Article  CAS  Google Scholar 

  28. Dias, C. O., dos Santos Opuski de Almeida, J., Pinto, S. S., de Oliveira Santana, F. C., Verruck, S., Müller, C. M. O., … de Mello Castanho Amboni, R. D. (2018). Development and physico-chemical characterization of microencapsulated bifidobacteria in passion fruit juice: A functional non-dairy product for probiotic delivery. Food Bioscience, 24, 26–36. https://doi.org/10.1016/j.fbio.2018.05.006

  29. Bampi, G. B., Backes, G. T., Cansian, R. L., de Matos, F. E., Ansolin, I. M. A., Poleto, B. C., … Favaro-Trindade, C. S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9(8), 1422–1428. https://doi.org/10.1007/s11947-016-1724-z

  30. Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/j.fbio.2015.11.001

    Article  CAS  Google Scholar 

  31. Sagheddu, V., Elli, M., Biolchi, C., Lucido, J., Morelli, L., Technologies, A. A., … Cuore, S. (2018). Impact of mode of assumption and food matrix on probiotic viability . J Food Microiology, 2(2), 2–7

  32. Malmo, C., La Storia, A., & Mauriello, G. (2013). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food and Bioprocess Technology, 6(3), 795–805. https://doi.org/10.1007/s11947-011-0755-8

    Article  CAS  Google Scholar 

  33. Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2012). In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Research International, 49(2), 619–625. https://doi.org/10.1016/j.foodres.2012.09.007

    Article  CAS  Google Scholar 

  34. Prasanna, P. H. P., & Charalampopoulos, D. (2018). Encapsulation of Bifidobacterium longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk. Food Bioscience, 21, 72–79. https://doi.org/10.1016/j.fbio.2017.12.002

    Article  CAS  Google Scholar 

  35. Sarkar, T., Salauddin, M., Pati, S., Sheikh, H. I., & Chakraborty, R. (2021). Application of raw and differently dried Pineapple (Ananas comosus) pulp on Rasgulla (sweetened Casein Ball) to enhance its phenolic profile, shelf life, and in-vitro digestibility characteristics. Journal of Food Processing and Preservation, 45(3), e15233. https://doi.org/10.1111/JFPP.15233

    Article  CAS  Google Scholar 

  36. Gomes de Oliveira, M. E., Fernandes Garcia, E., Vasconcelos de Oliveira, C. E., Pereira Gomes, A. M., Esteves Pintado, M. M., Ferreira Madureira, A. R. M., … de Souza, E. L. (2014). Addition of probiotic bacteria in a semi-hard goat cheese (coalho): Survival to simulated gastrointestinal conditions and inhibitory effect against pathogenic bacteria. Food Research International, 64, 241–247. https://doi.org/10.1016/j.foodres.2014.06.032

  37. Okuro, P. K., Thomazini, M., Balieiro, J. C. C., Liberal, R. D. C. O., & Fávaro-Trindade, C. S. (2013). Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Research International, 53(1), 96–103. https://doi.org/10.1016/j.foodres.2013.03.042

    Article  CAS  Google Scholar 

  38. Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591. https://doi.org/10.3390/nu11071591

    Article  CAS  PubMed Central  Google Scholar 

  39. Golding, M., Wooster, T. J., Day, L., Xu, M., Lundin, L., Keogh, J., & Cliftonx, P. (2011). Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter, 7(7), 3513–3523. https://doi.org/10.1039/c0sm01227k

    Article  CAS  Google Scholar 

  40. Arslan-Tontul, S., & Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology, 81, 160–169. https://doi.org/10.1016/j.lwt.2017.03.060

    Article  CAS  Google Scholar 

  41. Fritzen-Freire, C. B., Prudêncio, E. S., Pinto, S. S., Muñoz, I. B., & Amboni, R. D. M. C. (2013). Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT - Food Science and Technology, 50(1), 39–44. https://doi.org/10.1016/j.lwt.2012.07.037

    Article  CAS  Google Scholar 

  42. Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17–24. https://doi.org/10.1016/j.lwt.2012.08.003

    Article  CAS  Google Scholar 

  43. Ding, W. K., & Shah, N. P. (2009). Effect of various encapsulating materials on the stability of probiotic bacteria. Journal of Food Science, 74(2). https://doi.org/10.1111/j.1750-3841.2009.01067.x

  44. Endo, A., Teräsjärvi, J., & Salminen, S. (2014). Food matrices and cell conditions influence survival of Lactobacillus rhamnosus GG under heat stresses and during storage. International Journal of Food Microbiology, 174, 110–112. https://doi.org/10.1016/j.ijfoodmicro.2014.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Código Financeiro 001, Brazil. The authors also thank the following Brazilian agencies for their financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Fapergs).

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Conselho Nacional de Desenvolvimento Científico e Tecnológico,Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Author information

Authors and Affiliations

Authors

Contributions

MR, WS, and SP conceived and designed this research. AF, PO, and FC contributed new reagents or analytical tools. MR, GL, and FB performed the experiments. All authors analyzed the data. MR and FB wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Simone Pieniz.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare that they consent to participate.

Consent for Publication

The authors declare that they consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Microcapsules demonstrated high cell viability after passing through the TGI.

• Microcapsules showed thermal resistance in 60, 65, and 70 °C.

• Microcapsules showed potential application in different matrices using thermal processing.

• Microencapsulation ensured greater storage stability when compared to free cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosolen, M.D., Bordini, F.W., da Luz, G.d. et al. Survival of Microencapsulated Lactococcus lactis Subsp. lactis R7 Applied in Different Food Matrices. Appl Biochem Biotechnol 194, 2135–2150 (2022). https://doi.org/10.1007/s12010-022-03804-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03804-z

Keywords

Navigation