Skip to main content
Log in

Role of Inflammatory Niche and Adult Cardiomyocyte Coculture on Differentiation, Matrix Synthesis, and Secretome Release by Human Bone Marrow Mesenchymal Stem Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) causes cardiomyocyte death, provokes innate immune response, and initiates tissue remodeling. The intrinsic healing process is insufficient to replace the lost cells, or regenerate and restore the functional features of the native myocardium. Autologous bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation is being explored to offer therapeutic potential after MI. Here, we cultured human BM-MSC spheroids in three-dimensional collagenous gels for 28 days under exposure to tumor necrosis factor-alpha (+ TNFα), and coculture with adult human cardiomyocytes, or with conditioned media (CM) pooled from TNFα-stimulated adult cardiomyocytes. MSC differentiation marker (CD90, GATA4, cTnI, cTnT, Cx43, MHC, α-actin) expression, matrix protein (elastin, hyaluonic acid, sulfated glycosaminoglycans, laminin, fibrillin, nitric oxide synthase) synthesis, and secretome (cytokines, chemokines, growth factors) release at days 12 and 28 were assessed. MSC density decreased with duration in all culture conditions, except in controls. GATA4 expression was higher in cocultures but lower in + TNFα cultures. Synthesis and deposition of various extracellular matrix proteins and lysyl oxidase within MSC cultures, as well as secretome composition, were strongly dependent on the culture condition and duration. Results suggest that TNFα-induced inflammation suppresses BM-MSC survival and differentiation into mature cardiomyocytes by day 28, while promoting matrix protein synthesis and cytokine release conducive to MI remodeling. These findings could have implications in developing tissue engienering and cell transplantation strategies targeting MI, as well as to develop therapuetics to target inflammation-induced matrix remodeling post-MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jourdan-LeSaux, C., Zhang, J., & Lindsey, M. L. (2010). Extracellular matrix roles during cardiac repair. Life Sciences, 87, 391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yabluchanskiy, A., Li, Y., Chilton, R. J., & Lindsey, M. L. (2013). Matrix metalloproteinases: Drug targets for myocardial infarction. Current Drug Targets, 14, 276–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Altara, R., Manca, M., Sabra, R., Eid, A. A., Booz, G. W., & Zouein, F. A. (2016). Temporal cardiac remodeling post-myocardial infarction: Dynamics and prognostic implications in personalized medicine. Heart Failure Reviews, 21, 25–47.

    Article  PubMed  Google Scholar 

  4. Frangogiannis, N. G. (2012). Regulation of the inflammatory response in cardiac repair. Circulation Research, 110, 159–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan, D., Takawale, A., Lee, J., & Kassiri, Z. (2012). Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair, 5, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B. A., & Druid, H. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silvestri, A., Boffito, M., Sartori, S., & Ciardelli, G. (2013). Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromolecular Bioscience, 13, 984–1019.

    Article  CAS  PubMed  Google Scholar 

  8. Joshi, J., & Kothapalli, C. R. (2015). Nanofibers based tissue engineering and drug delivery approaches for myocardial regeneration. Current Pharmaceutical Design, 21, 2006–2020.

    Article  CAS  PubMed  Google Scholar 

  9. Karantalis, V., & Hare, J. M. (2015). Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research, 116, 1413–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh, A., Singh, A., & Sen, D. (2016). Mesenchymal stem cells in cardiac regeneration: A detailed progress report of the last 6 years (2010–2015). Stem Cell Research & Therapy, 7, 82.

    Article  Google Scholar 

  11. Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: Biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Linthout, S., Stamm, C., Schultheiss, H.-P., & Tschöpe, C. (2011). Mesenchymal stem cells and inflammatory cardiomyopathy: Cardiac homing and beyond. Cardioliology Research and Practice, 2011, 757154.

    Google Scholar 

  13. Miao, C., Lei, M., Hu, W., Han, S., & Wang, Q. (2017). A brief review: The therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Research & Therapy, 8, 242.

    Article  CAS  Google Scholar 

  14. Chen, Z., Chen, L., Zeng, C., & Wang, W. E. (2018). Functionally improved mesenchymal stem cells to better treat myocardial infarction. Stem Cells International, 2018, 7045245.

    PubMed  PubMed Central  Google Scholar 

  15. Joshi, J., Abnavi, M. D., & Kothapalli, C. R. (2019). Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within three-dimensional collagen hydrogels: Integrating experiments and modelling. Journal of Tissue Engineering and Regenerative Medicine, 13, 1923–1937.

    Article  CAS  PubMed  Google Scholar 

  16. Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., Fujii, T., Uematsu, M., Ohgushi, H., Yamagishi, M., Tokudome, T., Mori, H., Miyatake, K., & Kitamura, S. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112, 1128–1135.

    Article  PubMed  Google Scholar 

  17. Joshi, J., Brennan, D., Beachley, V., & Kothapalli, C. R. (2018). Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. Journal of Biomedical Materials Research. Part A, 106, 3303–3312.

    Article  CAS  PubMed  Google Scholar 

  18. Joshi, J., Mahajan, G., & Kothapalli, C. R. (2018). Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids. Biotechnology and Bioengineering, 115, 2013–2026.

    Article  CAS  PubMed  Google Scholar 

  19. Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., & Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells, 6, 552.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Experimental & Molecular Medicine, 45, e54.

    Article  CAS  Google Scholar 

  21. McCloy, R. A., Rogers, S., Caldon, C. E., Lorca, T., Castro, A., & Burgess, A. (2014). Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle, 13, 1400–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burgess, A., Vigneron, S., Brioudes, E., Labbé, J. C., Lorca, T., & Castro, A. (2010). Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proceedings of the National academy of Sciences of the United States of America, 107, 12564–12569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vliegen, H. W., Bruschke, A. V. G., & Van der Laarse, A. (1990). Different response of cellular DNA content to cardiac hypertrophy in human and rat heart myocytes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 95, 109–114.

    Article  CAS  Google Scholar 

  24. Wang, L., Tran, I., Seshareddy, K., Weiss, M. L., & Detamore, M. S. (2009). A comparison of human bone marrow–derived mesenchymal stem cells and human umbilical cord–derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Engineering Part A, 15, 2259–2266.

    Article  CAS  PubMed  Google Scholar 

  25. Gishto, A., Farrell, K., & Kothapalli, C. R. (2015). Tuning composition and architecture of biomimetic scaffolds for enhanced matrix synthesis by murine cardiomyocytes. Journal of Biomedical Materials Research. Part A, 103, 693–708.

    Article  PubMed  CAS  Google Scholar 

  26. Huang, Y., Zheng, L., Gong, X., Jia, X., Song, W., Liu, M., & Fan, Y. (2012). Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells. PloS One, 7, e34960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Z., Guo, X., Palmer, A. F., Das, H., & Guan, J. (2012). igh-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel. Acta Biomat, 8, 3586–3595.

    Article  CAS  Google Scholar 

  28. Park, J. S., Huang, N. F., Kurpinski, K. T., Patel, S., Hsu, S., & Li, S. (2007). Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Frontiers in Bioscience, 12, 5098–5116.

    Article  CAS  PubMed  Google Scholar 

  29. Tan, G., Shim, W., Gu, Y., Qian, L., Chung, Y. Y., Lim, S. Y., Yong, P., Sim, E., & Wong, P. (2010). Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells. Differentiation, 79, 260–271.

    Article  CAS  PubMed  Google Scholar 

  30. Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2010). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15, 1032–1043.

    Article  CAS  Google Scholar 

  31. Antonioli, E., Piccinato, C. A., Nader, H. B., Cohen, M., Goldberg, A. C., & Ferretti, M. (2015). Modulation of hyaluronan synthesis by the interaction between mesenchymal stem cells and osteoarthritic chondrocytes. Stem Cells International, 2015, 640218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chen, W., Liu, X., Chen, Q., Bao, C., Zhao, L., Zhu, Z., & Xu, H. H. K. (2018). Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. Journal of Tissue Engineering and Regenerative Medicine, 12, 191–203.

    Article  CAS  PubMed  Google Scholar 

  33. McCorry, M. C., Puetzer, J. L., & Bonassar, L. J. (2016). Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: Analysis of cell shape, matrix production, and mechanical performance. Stem Cell Research & Therapy, 7, 39.

    Article  CAS  Google Scholar 

  34. Shen, T., Shen, J., Zheng, Q. Q., Li, Q. S., Zhao, H. L., Cui, L., & Hong, C. Y. (2017). Cell viability and extracellular matrix synthesis in a co-culture system of corneal stromal cells and adipose-derived mesenchymal stem cells. International Journal of Ophthalmology, 10, 670–678.

    PubMed  PubMed Central  Google Scholar 

  35. Xu, Y., Zhang, X. J., Fang, L., & Zhao, T. B. (2015). Co-culture of annulus fibrosus cells and bone marrow mesenchymal stem cells. Genetics and Molecular Research, 14, 3932–3938.

    Article  CAS  PubMed  Google Scholar 

  36. Figeac, F., Lesault, P. F., Le Coz, O., Damy, T., Souktani, R., Trébeau, C., Schmitt, A., Ribot, J., Mounier, R., Guguin, A., Manier, C., Surenaud, M., Hittinger, L., Dubois-Randé, J. L., & Rodriguez, A. M. (2014). Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells, 32, 216–230.

    Article  CAS  PubMed  Google Scholar 

  37. Ma, Z., Yang, H., Liu, H., Xu, M., Runyan, R. B., Eisenberg, C. A., Markwald, R. R., Borg, T. K., & Gao, B. Z. (2013). Mesenchymal stem cell-cardiomyocyte interactions under defined contact modes on laser patterned biochips. PloS One, 8, e56554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, S. P., & Zeng, L. H. (1997). Elevated plasma levels of tumor necrosis factor in chronic heart failure with cachexia. International Journal of Cardiology, 58, 257–261.

    Article  CAS  PubMed  Google Scholar 

  39. Haudek, S. B., Taffet, G. E., Schneider, M. D., & Mann, D. L. (2007). TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. The Journal of Clinical Investigation, 117, 2692–2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krown, K. A., Page, M. T., Nguyen, C., Zechner, D., Gutierrez, V., Comstock, K. L., Glembotski, C. C., Quintana, P. J., & Sabbadini, R. A. (1996). Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. The Journal of Clinical Investigation, 98, 2854–2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song, W., Lu, X., & Feng, Q. (2000). Tumor necrosis factor-α induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovascular Research, 45, 595–602.

    Article  CAS  PubMed  Google Scholar 

  42. Gharibi, B., & Hughes, F. J. (2012). Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Translational Medicine, 1, 771–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodrigues, M., Griffith, L. G., & Wells, A. (2010). Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Research & Therapy, 1, 32.

    Article  CAS  Google Scholar 

  44. Itoh, N., Ohta, H., Nakayama, Y., & Konishi, M. (2016). Roles of FGF signals in heart development, health, and disease. Front Cell Dev Biol, 4, 110.

    PubMed  PubMed Central  Google Scholar 

  45. Rosenblatt-Velin, N., Lepore, M. G., Cartoni, C., Beermann, F., & Pedrazzini, T. (2005). FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. The Journal of Clinical Investigation, 115, 1724–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartunek, J., Croissant, J. D., Wijns, W., Gofflot, S., de Lavareille, A., Vanderheyden, M., Kaluzhny, Y., Mazouz, N., Willemsen, P., Penicka, M., Mathieu, M., Homsy, C., De Bruyne, B., McEntee, K., Lee, I. W., & Heyndrickx, G. R. (2007). Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 292, H1095–H1104.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, H., Wang, N., Zhang, Z., Wang, H., Du, J., & Tang, J. (2017). Effects of tumor necrosis factor-α on morphology and mechanical properties of HCT116 human colon cancer cells investigated by atomic force microscopy. Scanning, 2017, 2027079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wójciak-Stothard, B., Entwistle, A., Garg, R., & Ridley, A. J. (1998). Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. Journal of Cellular Physiology, 176, 150–165.

    Article  PubMed  Google Scholar 

  49. da Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20, 419–427.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CK expresses his gratitude to the CSU Office of Research funds, and JJ thanks the financial support from the Cellular and Molecular Medicine Specialization Fellowship and Dissertation Research Award from CSU.

Author information

Authors and Affiliations

Authors

Contributions

JJ: experiments, data analysis, methodology, writing original draft, review and editing of final draft. CK: conceptualization, data analysis, funding acquisition, methodology, project administration, resources, writing original draft, review and editing of final draft.

Corresponding author

Correspondence to Chandrasekhar R. Kothapalli.

Ethics declarations

Ethics Approval

The authors confirm that they have adhered to all ethical policies of the journal, as noted on the journal’s author guidelines page.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2029 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, J., Kothapalli, C.R. Role of Inflammatory Niche and Adult Cardiomyocyte Coculture on Differentiation, Matrix Synthesis, and Secretome Release by Human Bone Marrow Mesenchymal Stem Cells. Appl Biochem Biotechnol 194, 1938–1954 (2022). https://doi.org/10.1007/s12010-022-03803-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03803-0

Keywords

Navigation