Skip to main content
Log in

A Simple Fluorescent Aptasensing Platform Based on Graphene Oxide for Dopamine Determination

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dopamine (DA) is a catecholamine neurotransmitter playing an important role in different biological functions including central nervous, renal, cardiovascular, and hormonal systems. The sensitive and selective detection of this neurotransmitter plays a key role in the early diagnosis of various diseases related to abnormal levels of dopamine. Therefore, it is of great importance to explore rapid, simple, and accurate methods for detection of dopamine with high sensitivity and specificity. We propose in this work a fluorescent aptasensor based on graphene oxide (GO) as a quencher, for the rapid determination of dopamine. The principle of this aptasensor is based on fluorescence resonance energy transfer (FRET), where GO was used as energy donor, and a carboxy fluorescein (FAM)-labeled aptamer as acceptor. In the absence of DA, FAM-aptamer was adsorbed on the surface of GO through π-π stacking interactions between nucleotide bases and the carbon network, leading to a weak FRET and a quenching of the FAM fluorescence. However, by adding the target, the aptamer undergoes a conformational change to bind to DA with high affinity, resulting in a fluorescence recovery. Under the optimal experimental conditions, the fluorescence recovery was linearly proportional to the concentration of DA in the range of 3–1680 nM, with a limit of detection of 0.031 nM and a limit of quantification of 0.1 nM. Moreover, the developed assay exhibited minor response in the presence of various interferents and it revealed a satisfactory applicability in human serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable

Code Availability

Not applicable

References

  1. Shang, N. G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., Dhesi, S. S., Marchetto, H. J. A. F. M. (2008) Catalyst‐free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. 18, 3506-3514.

  2. Bucolo, C., Leggio, G. M., Drago, F., Salomone, S. J. P., therapeutics (2019) Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. 203, 107392.

  3. Fischer, N. M., Hinkle, J. T., Perepezko, K., Bakker, C. C., Morris, M., Broen, M. P., Butala, A., Dawson, T. M., Leentjens, A. F., Mari, Z. (2021). Brainstem pathologies correlate with depression and psychosis in parkinson's disease.

  4. Dias, A. S. A., Pinto, J. C. A., Magalhães, M., Mendes, V. M., Manadas, B. J. J., Analysis, B. (2020). Analytical methods to monitor dopamine metabolism in plasma: Moving forward with improved diagnosis and treatment of neurological disorders. 187, 113323.

  5. Pérez-Fernández, V., Harman, D. G., Morley, J. W., Cameron, M. A. J. A. (2017). Optimized method to quantify dopamine turnover in the mammalian retina. 89, 12276-12283.

  6. Sahoo, H. J. J. o. P., Reviews, P. C. P. (2011). Förster resonance energy transfer–A spectroscopic nanoruler: Principle and application, 12, 20-30.

  7. Medintz, I. L., & Hildebrandt, N. (2013). FRET-Förster resonance energy transfer: From theory to applications. John Wiley & Sons.

    Book  Google Scholar 

  8. Pehlivan, Z. S., Torabfam, M., Kurt, H., Ow-Yang, C., Hildebrandt, N., & Yüce, M. J. M. A. (2019). Aptamer and nanomaterial based FRET biosensors: A review on recent advances (2014–2019). Mikrochim Acta, 186, 1–22.

    Article  Google Scholar 

  9. Shi, J., Tian, F., Lyu, J., Yang, M. (2015). Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. 3, 6989-7005.

  10. Seok, Y., Byun, J. Y., Shim, W. B., & Kim, M. G. J. A. C. A. (2015). A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta, 886, 182–187.

    Article  CAS  Google Scholar 

  11. Mahmoudpour, M., Ding, S., Lyu, Z., Ebrahimi, G., Du, D., Dolatabadi, J. E. N., Torbati, M., Lin, Y. J. N. T. (2021) Aptamer functionalized nanomaterials for biomedical applications. Recent Advances and New Horizons. 39, 101177.

  12. Vo-Dinh, T., (2003) Novel fluorescent molecular beacon DNA probes for biomolecular recognition, CRC Press, pp. 1533-1556.

  13. Song, S., Liang, Z., Zhang, J., Wang, L., Li, G., & Fan, C. J. A. C. (2009). Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed Engl, 121, 8826–8830.

    Article  Google Scholar 

  14. Li, G.-Z., & Tian, F. (2013). Guanine-decorated graphene nanostructures for sensitive monitoring of neuron-specific enolase based on an enzyme-free electrocatalytic reaction. Analytical Sciences, 29, 1195–1201.

    Article  CAS  Google Scholar 

  15. Pehlivan, Z. S., Torabfam, M., Kurt, H., Ow-Yang, C., Hildebrandt, N., & Yüce, M. (2019). Aptamer and nanomaterial based FRET biosensors: A review on recent advances (2014–2019). Microchimica Acta, 186, 563.

    Article  CAS  Google Scholar 

  16. Hildebrandt, N., Spillmann, C. M., Algar, W. R., Pons, T., Stewart, M. H., Oh, E., Susumu, K., Diaz, S. A., Delehanty, J. B., Medintz, I. L. J. C. R. (2017). Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. 117, 536-711.

  17. Hunt, A., Dikin, D. A., Kurmaev, E. Z., Boyko, T. D., Bazylewski, P., Chang, G. S., & Moewes, A. (2012). Epoxide speciation and functional group distribution in graphene oxide paper-like materials. Chem Rev, 22, 3950–3957.

    CAS  Google Scholar 

  18. Yuan, H., Qi, J., Xing, C., An, H., Niu, R., Zhan, Y., Fan, Y., Yan, W., Li, R., Wang, B. J. A. F. M. (2015). Graphene‐oxide‐conjugated polymer hybrid materials for calmodulin sensing by using FRET strategy. 25, 4412-4418.

  19. Hermann, T., & Patel, D. J. J. S. (2000). Adaptive recognition by nucleic acid aptamers. Science, 287, 820–825.

    Article  CAS  Google Scholar 

  20. Liu, X., & Liu, J. J. V. (2021). Biosensors and sensors for dopamine detection., 2, 20200102.

    Google Scholar 

  21. Zhu, Y., Cai, Y., Xu, L., Zheng, L., Wang, L., Qi, B., Xu, C. (2015). Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. 7, 7492-7496.

  22. Mao, B., Calatayud, D. G., Mirabello, V., Kuganathan, N., Ge, H., Jacobs, R. M., Shepherd, A. M., Martins, J. A. R., De La Serna, J. B., Hodges, B. (2017). Fluorescence‐lifetime imaging and super‐resolution microscopies shed light on the directed‐and self‐assembly of functional porphyrins onto carbon nanotubes and flat surfaces. 23, 9772

  23. Duan, Y. F., Ning, Y., Song, Y., Deng, L. J. M. A. (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. 181, 647-653

  24. Walsh, R., DeRosa, M. (2009). Retention of function in the DNA homolog of the RNA dopamine aptamer. 388, 732-735

  25. Zhang, M., Yin, B.-C., Tan, W., Ye, B.-C. J. B., Bioelectronics (2011). A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. 26, 3260-3265.

  26. Lee, J., Kim, J., Kim, S., Min, D.-H. J. A. (2016). Biosensors based on graphene oxide and its biomedical application. 105, 275-287.

  27. Arvand, M., & Mirroshandel, A. A. J. B. (2017). Bioelectronics Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosens Bioelectron, 96, 324–331.

    Article  CAS  Google Scholar 

  28. Goud, K. Y., Sharma, A., Hayat, A., Catanante, G., Gobi, K. V., Gurban, A. M., Marty, J. (2016) Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1: Analytical performance comparison of two aptamers. 508, 19-24.

  29. Wang, Y., Kang, K., Wang, S., Kang, W., Cheng, C., Niu, L. M., & Guo, Z. (2020). A novel label-free fluorescence aptasensor for dopamine detection based on an Exonuclease III- and SYBR Green I- aided amplification strategy. Sensors and Actuators B: Chemical, 305, 127348.

    Article  CAS  Google Scholar 

  30. Ren, L., Hang, X., Qin, Z., Zhang, P., Wang, W., Zhang, Y., & Jiang, L. (2020). Determination of dopamine by a label-free fluorescent aptasensor based on AuNPs and carbon quantum dots. Optik, 208, 163560.

    Article  CAS  Google Scholar 

  31. Guo, T., Wu, C., Offenhäusser, A., Mayer, D. (2020). A novel ratiometric electrochemical biosensor based on a split aptamer for the detection of dopamine with logic gate operations. 217, 1900924

  32. Jarczewska, M., Sheelam, S. R., Ziółkowski, R., & Górski, Ł. (2015). A label-free electrochemical DNA aptasensor for the detection of dopamine. Journal of The Electrochemical Society, 163, B26–B31.

    Article  Google Scholar 

  33. Azadbakht, A., Roushani, M., Abbasi, A. R., Menati, S., & Derikvand, Z. (2016). A label-free aptasensor based on polyethyleneimine wrapped carbon nanotubes in situ formed gold nanoparticles as signal probe for highly sensitive detection of dopamine. Materials Science and Engineering: C, 68, 585–593.

    Article  CAS  Google Scholar 

  34. Wang, Y., Li, Y., Tang, L., Lu, J., & Li, J. (2009). Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications, 11, 889–892.

    Article  CAS  Google Scholar 

  35. Wei, B., Zhong, H., Wang, L., Liu, Y., Xu, Y., Zhang, J., Xu, C., He, L., & Wang, H. (2019). Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. International Journal of Biological Macromolecules, 135, 400–406.

    Article  CAS  Google Scholar 

  36. Liu, L., Xia, N., Meng, J.-J., Zhou, B.-B., & Li, S.-J. (2016). An electrochemical aptasensor for sensitive and selective detection of dopamine based on signal amplification of electrochemical-chemical redox cycling. Journal of Electroanalytical Chemistry, 775, 58–63.

    Article  CAS  Google Scholar 

  37. Dalirirad, S., & Steckl, A. J. J. A. B. (2020). Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem, 596, 113637.

    Article  CAS  Google Scholar 

  38. Zheng, Y., Wang, Y., & Yang, X. (2011). Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors and Actuators B: Chemical, 156, 95–99.

    Article  CAS  Google Scholar 

  39. Feng, J.-J., Guo, H., Li, Y.-F., Wang, Y.-H., Chen, W.-Y., & Wang, A.-J. (2013). Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 5, 1226–1231.

    Article  CAS  Google Scholar 

  40. Xu, J., Li, Y., Wang, L., Huang, Y., Liu, D., Sun, R., Luo, J., & Sun, C. (2015). A facile aptamer-based sensing strategy for dopamine through the fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. Dyes and Pigments, 123, 55–63.

    Article  CAS  Google Scholar 

  41. Seto, D., Maki, T., Soh, N., Nakano, K., Ishimatsu, R., & Imato, T. (2012). A simple and selective fluorometric assay for dopamine using a calcein blue–Fe2+ complex fluorophore. Talanta, 94, 36–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Bioengineering Laboratory, Higher National School of Biotechnology, Constantine, Algeria. We thank the National Biotechnology Research Center for providing the microplate reader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Rhouati.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teniou, A., Rhouati, A. & Catanante, G. A Simple Fluorescent Aptasensing Platform Based on Graphene Oxide for Dopamine Determination. Appl Biochem Biotechnol 194, 1925–1937 (2022). https://doi.org/10.1007/s12010-022-03802-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03802-1

Keywords

Navigation