Skip to main content
Log in

Role of Bio-Based Synthesized Nanozinc Oxide in Ameliorating the Deleterious Effects Caused by Lead in Vigna radiata L

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work describes the bio-based green synthesis and characterization of zinc oxide nanoparticles (ZnO NPs) using leaf extract of Tridax procumbens; the synthesized nanoparticles were used to study their beneficial effect on the growth and metabolism of Vigna radiata. ZnO NPs were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and ultraviolet–visible spectroscopy (UV–Vis spectra). Growth of V. radiata seedlings was measured in terms of shoot length and root length that were treated 20 and 40 mg/L concentrations of green synthesized ZnO NPs and constant concentration (50 mg/L) of PbCl2. These studies have shown the effect of ZnO NPs in the stimulation of growth as well as physiological and biochemical parameters. Vigna seedlings showed positive effects depending upon the increasing concentrations of ZnO NPs. This study suggests that ZnO NPs can be effectively used to ameliorate the toxicity of Pb in Vigna plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Singh, R. P., Shukla, V. K., Yadav, R. S., Sharma, P. K., Singh, P. K., & Pandey, A. C. (2011). Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letter, 2, 313–317.

    Article  Google Scholar 

  2. Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basub, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 5, 4993–5003.

    Article  CAS  Google Scholar 

  3. Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38, 545–560.

    Article  CAS  Google Scholar 

  4. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science and Technology, 42, 5580–5585.

    Article  CAS  Google Scholar 

  5. Singh, N. B., Amist, N., Yadav, K., Singh, D., Pandey, J. K., & Singh, S. C. (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing, 3, 1–12.

    Article  Google Scholar 

  6. Nas, F. S., & Ali, M. (2018). The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Ecology & Environmental Science, 3, 265–268.

    Google Scholar 

  7. Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences, 9, 499.

    Article  CAS  Google Scholar 

  8. Abdul-Baki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Science, 13, 227–232.

    Article  CAS  Google Scholar 

  9. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  10. Hedge, J. E., Hofreiter, B. T., & Whistler, R. L. (1962). Carbohydrate chemistry (p. 17). Academic Press.

    Google Scholar 

  11. Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559–566.

    Article  CAS  Google Scholar 

  12. Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222–1227.

    Article  CAS  Google Scholar 

  13. Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43, 1274–1279.

    Article  CAS  Google Scholar 

  14. Lutts, S., Kinect, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389–398.

    Article  CAS  Google Scholar 

  15. Heath, R. L., & Packer, L. (1968). Photo peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  16. Bates, L. S., Walderen, R. D., & Taere, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  17. Jain, N., Bhargava, A., Tarafdar, J. C., Singh, S. K., & Panwar, J. (2013). A biomimetic approach towards synthesis of zinc oxide nanoparticles. Applied Microbiology and Biotechnology, 97, 859–869.

    Article  CAS  Google Scholar 

  18. Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonashydrophila and their activity against pathogenic bacteria and fungi. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 90, 78–84.

    Article  CAS  Google Scholar 

  19. Prashanth, G. K., Prashanth, P. A., & Nagabhushana, B. M. (2018). Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Meliaazedarach and Indigoferatinctoria as biofuels. Artificial Cells, Nanomedicine, and Biotechnology, 46, 968–979.

    Article  CAS  Google Scholar 

  20. Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis Miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46, 2560–2566.

    Article  CAS  Google Scholar 

  21. Saha, R., Subramani, K., Raju, S. A. K. P. M., Rangaraj, S., & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80–91.

    Article  CAS  Google Scholar 

  22. Luque, P. A., Nava, O., Soto-Robles, C. A., Vilchis-Nestor, A. R., Garrafa-Galvez, H. E., & Castro-Beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 17638–17643.

    CAS  Google Scholar 

  23. Ngoepe, N. M., Mbita, Z., Mathipa, M., Mketo, N., Ntsendwana, B., & Hintsho-Mbita, N. C. (2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44, 16999–17006.

    Article  CAS  Google Scholar 

  24. Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91–95.

    Article  CAS  Google Scholar 

  25. Raliya, R., Nair, R., Chavalmane, S., Wang, W. N., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics7(12), 1584–1594

  26. Liu, J., Cai, H., Mei, C., & Wang, M. (2015). Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Frontiers of Environmental Science & Engineering, 9(5), 905–911.

    Article  CAS  Google Scholar 

  27. Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiology and Biochemistry, 110, 59–69.

    Article  CAS  Google Scholar 

  28. Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2015). Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry, 96, 189–198.

    Article  CAS  Google Scholar 

  29. Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M.,& Ahmad, P. (2019). Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26 (11) 11288–11299

  30. Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011, 1-7.

Download references

Funding

The authors wish to acknowledge University Grant Commission, New Delhi, India (Ref. No. 20/12/2015 (ii) EU-V; Sr. No. 2121530863, dated: 14.07.2016), for providing financial assistance under Junior Research Fellowship (NET-UGC-JRF) Scheme.

Author information

Authors and Affiliations

Authors

Contributions

Ravi Kumar Yadav contributed in experiment designing and performing, writing, and drawing the figures of this manuscript. VijayaYadav, Shubhra Khare Niharika, and Zeba Azim formatted the content of the article. Ajey Singh and N. B. Singh critically evaluated and reviewed the manuscript.

Corresponding author

Correspondence to N. B. Singh.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All authors have approved the manuscript and agree with its submission to Applied Biochemistry and Biotechnology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.K., Singh, N.B., Singh, A. et al. Role of Bio-Based Synthesized Nanozinc Oxide in Ameliorating the Deleterious Effects Caused by Lead in Vigna radiata L. Appl Biochem Biotechnol 194, 2005–2020 (2022). https://doi.org/10.1007/s12010-022-03801-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03801-2

Keywords

Navigation