Skip to main content

Advertisement

Log in

Analysis of Antibiofilm Activities of Bioactive Compounds from Honeyweed (Leonurus sibiricus) Against P. aeruginosa: an In Vitro and In Silico Approach

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Leonurus sibiricus (Red verticilla, honeyweed) is a type of herbaceous plant predominantly found in Asian subcontinents as weed in crop fields and is widely used for treating diabetes, bronchitis, and menstrual irregularities. However, there is a dearth of study in the application of the plant phytocompounds for treating biofilm-associated chronic infections. The bioactive compounds mainly comprise of tri-terpenes, di-terpenes, phenolic acid, and flavonoids which may have potential role as antimicrobial and antibiofilm agents. Acute and chronic infection causing microbes usually form biofilm and develop virulence factors and antibiotic resistance through quorum sensing (QS). In this study, the bioactive compounds leosibirin, sibiricinone A, leosibirone A, leonotin, quercetin, lavandulifolioside, and myricetin were identified using GC–MS analysis. These were used for analyzing the antibiofilm and anti-quorum sensing activities (rhamnolipid, AHL assay, swarming motility assay) against the biofilm formed by Pseudomonas aeruginosa, the most significant nosocomial disease-causing bacteria. The compounds were able to bring about maximum inhibition in biofilm formation and QS. Although the antibiofilm activity of the phytoextract was found to be higher than that of individual phytocompounds at a concentration of 250 µg/mL, quercetin and myricetin showed highest antibiofilm activity against Pseudomonas aeruginosa, respectively, at MIC values of 135 µg/mL and 150 µg/mL against P aeruginosa. FT-IR study also revealed that the active ingredients were able to bring about the destruction of exopolysaccharides (EPS). These observations were further validated by molecular docking interactions that showed the active ingredients inhibit the functioning of QS sensing proteins by binding with them. It was observed that myricetin showed better interactions with the QS proteins of P. aeruginosa. Myricetin and quercetin show considerable inhibition of biofilm in comparison to the phytocompounds. Thus, the present study suggests that the active compounds from L. sibiricus can be used as an alternate strategy in inhibiting the biofilm formed by pathogenic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Cross, A., Allen, J. R., Burke, J., Ducel, G., Harris, A., John, J., & … Meers, P. (1983). Nosocomial infections due to Pseudomonas aeruginosa: Review of recent trends. Reviews of infectious diseases, 5(Suppl 5), S837–S845. https://doi.org/10.1093/clinids/5.supplement_5.s837

  2. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging infectious diseases, 8(9), 881–890. https://doi.org/10.3201/eid0809.020063

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  4. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H., & atan, Siddhartha, P., & Ray, R. rani. (2021). Microbiologically synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers Microbiology, 12, 636588. https://doi.org/10.3389/fmicb.2021.636588

    Article  Google Scholar 

  5. Nag, M., Lahiri, D., Sarkar, T., Ghosh, S., Dey, A., Edinur, H. A., & … Ray, R. R. (2021). Microbial fabrication of nanomaterial and its role in disintegration of exopolymeric matrices of biofilm. Frontiers in Chemistry, 9, 369. https://doi.org/10.3389/fchem.2021.690590

  6. Breidenstein, E. B. M., de la Fuente-Núñez, C., & Hancock, R. E. W. (2011). Pseudomonas aeruginosa: All roads lead to resistance. Trends in microbiology, 19(8), 419–426. https://doi.org/10.1016/j.tim.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  7. Liao, J., & Sauer, K. (2012). The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. Journal of Bacteriology, 194(18), 4823–4836. https://doi.org/10.1128/JB.00765-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hurtuková, K., Fajstavrová, K., Rimpelová, S., Vokatá, B., Fajstavr, D., Kasálková, N. S., & … Slepička, P. (2021). Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials., 14(14), 4051. https://doi.org/10.3390/ma14144051

  9. Škubník, J., Pavlíčková, V., Ruml, T., & Rimpelová, S. (2021). Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants., 10(3), 569. https://doi.org/10.3390/plants10030569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sayed, M. A., Alam, M. A., Islam, M. S., Ali, M. T., Ullah, M. E., Shibly, A. Z., … Hasan-Olive, M. M. (2016). Leonurus sibiricus L. (honeyweed): A review of its phytochemistry and pharmacology. Asian Pacific Journal of Tropical Biomedicine, 6(12), 1076–1080. https://doi.org/10.1016/j.apjtb.2016.10.003

  11. Ahmed, F., Islam, M. A., & Rahman, M. M. (2006). Antibacterial activity of Leonurus sibiricus aerial parts. Fitoterapia, 77(4), 316–317. https://doi.org/10.1016/j.fitote.2006.03.005

    Article  PubMed  Google Scholar 

  12. Sitarek, P., Rijo, P., Garcia, C., Skała, E., Kalemba, D., Białas, A. J., … Śliwiński, T. (2017). Antibacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxidative Medicine and Cellular Longevity, 2017, 7384061. https://doi.org/10.1155/2017/7384061

  13. Quave, C. L., Estévez-Carmona, M., Compadre, C. M., Hobby, G., Hendrickson, H., Beenken, K. E., & Smeltzer, M. S. (2012). Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS ONE, 7(1), e28737. https://doi.org/10.1371/journal.pone.0028737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeyaseelan, E. C., & Jashothan, P. T. J. (2012). In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pacific Journal of Tropical Biomedicine, 2(9), 717–721. https://doi.org/10.1016/S2221-1691(12)60216-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patra, J. K., Kim, E. S., Oh, K., Kim, H.-J., Kim, Y., & Baek, K.-H. (2014). Antibacterial effect of crude extract and metabolites of Phytolacca americana on pathogens responsible for periodontal inflammatory diseases and dental caries. BMC Complementary and Alternative Medicine, 14, 343. https://doi.org/10.1186/1472-6882-14-343

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lahiri, D., Nag, M., Sarkar, T., Dutta, B., & Ray, R. R. (2021). Antibiofilm activity of α-amylase from Bacillus subtilis and prediction of the optimized conditions for biofilm removal by response surface methodology (RSM) and artificial neural network (ANN). Applied Biochemistry and Biotechnology., 193(6), 1853–1872. https://doi.org/10.1007/s12010-021-03509-9

    Article  CAS  PubMed  Google Scholar 

  17. Teh, C. H., Nazni, W. A., Nurulhusna, A. H., Norazah, A., & Lee, H. L. (2017). Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiology, 17(1), 36. https://doi.org/10.1186/s12866-017-0936-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baishya, R., Bhattacharya, A., Mukherjee, M., Lahiri, D., & Banerjee, S. (2016). Establishment of a simple reproducible model for antibiotic sensitivity pattern study of biofilm forming staphylococcus aureus. Materials Today: Proceedings, 3(10, Part A), 3461–3466. https://doi.org/10.1016/j.matpr.2016.10.028

  19. Lahiri, D., Nag, M., Dutta, B., Sarkar, T., & Ray, R. R. (2021). Artificial neural network and response surface methodology-mediated optimization of bacteriocin production by Rhizobium leguminosarum. Iranian Journal of Science and Technology, Transactions A: Science, 45,. https://doi.org/10.1007/s40995-021-01157-6

  20. Yang, Y.-H., Lee, T.-H., Kim, J. H., Kim, E. J., Joo, H.-S., Lee, C.-S., & Kim, B.-G. (2006). High-throughput detection method of quorum-sensing molecules by colorimetry and its applications. Analytical Biochemistry, 356(2), 297–299. https://doi.org/10.1016/j.ab.2006.05.030

    Article  CAS  PubMed  Google Scholar 

  21. Caiazza, N. C., Shanks, R. M. Q., & O’Toole, G. A. (2005). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. Journal of Bacteriology, 187(21), 7351–7361. https://doi.org/10.1128/JB.187.21.7351-7361.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, J., Bi, S., Chen, H., Chen, T., Yang, R., Li, M., & … Jia, A.-Q. (2017). Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Frontiers in Microbiology, 8, 769. https://doi.org/10.3389/fmicb.2017.00769

  23. Datta, S., Jana, D., Maity, T. R., Samanta, A., & Banerjee, R. (2016). Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1. 3 Biotech, 6(1), 18. https://doi.org/10.1007/s13205-015-0348-8

  24. Ding, X., Peng, X.-J., Jin, B.-S., Xiao, M., Chen, J.-K., Li, B., & … Nie, M. (2015). Spatial distribution of bacterial communities driven by multiple environmental factors in a beach wetland of the largest freshwater lake in China. Frontiers in Microbiology, 6, 129. https://doi.org/10.3389/fmicb.2015.00129

  25. Teanpaisan, R., Kawsud, P., Pahumunto, N., & Puripattanavong, J. (2017). Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. Journal of Traditional and Complementary Medicine, 7(2), 172–177. https://doi.org/10.1016/j.jtcme.2016.06.007

    Article  PubMed  Google Scholar 

  26. Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E., & Ausubel, F. M. (1982). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. Journal of Bacteriology, 149(1), 114–122. https://doi.org/10.1128/jb.149.1.114-122.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Consortium, S. G., Consortium, C. S. G., Consortium, N. S. G., Gräslund, S., Nordlund, P., Weigelt, J., … Gunsalus, K. C. (2008). Protein production and purification. Nature Methods, 5(2), 135–146. https://doi.org/10.1038/nmeth.f.202

  28. Brunk, C. F., Jones, K. C., & James, T. W. (1979). Assay for nanogram quantities of DNA in cellular homogenates. Analytical Biochemistry, 92(2), 497–500. https://doi.org/10.1016/0003-2697(79)90690-0

    Article  CAS  PubMed  Google Scholar 

  29. Pati, S., Chatterji, A., Dash, B. P., Nelson, B. R., Sarkar, T., Shahimi, S., & … Acharya, D. (2020). Structural characterization and antioxidant potential of chitosan by γ-irradiation from the carapace of horseshoe crab. Polymers, 12(10), 2361. https://doi.org/10.3390/polym12102361

  30. Sarkar, T., Bharadwaj, K. K., Salauddin, M., Pati, S., & Chakraborty, R. (2021). Phytochemical characterization, antioxidant, anti-inflammatory, anti-diabetic properties, molecular docking, pharmacokinetic profiling, and network pharmacology analysis of the major phytoconstituents of raw and differently dried Mangifera indica (Himsaga. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-021-03669-8

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37(Web Server issue), W623–33. https://doi.org/10.1093/nar/gkp456

  32. Miean, K. H., & Mohamed, S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry, 49(6), 3106–3112. https://doi.org/10.1021/jf000892m

    Article  CAS  PubMed  Google Scholar 

  33. Omar, S. H. (2018). Chapter 4 - Biophenols: Impacts and prospects in anti-Alzheimer drug discovery. In G. B. T.-D. and D. of N. A. from N. P. Brahmachari (Ed.), Natural Product Drug Discovery (pp. 103–148). Elsevier. https://doi.org/10.1016/B978-0-12-809593-5.00004-5

  34. Tauchen, J., Huml, L., Rimpelova, S., & Jurášek, M. (2020). Flavonoids and related members of the aromatic polyketide group in human health and disease: Do they really work? Molecules, 25(17), 3846. https://doi.org/10.3390/molecules25173846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ouyang, J., Sun, F., Feng, W., Sun, Y., Qiu, X., Xiong, L., & … Chen, Y. (2016). Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Journal of Applied Microbiology, 120(4), 966–974. https://doi.org/10.1111/jam.13073

  36. Mu, Y., Zeng, H., & Chen, W. (2021). Quercetin inhibits biofilm formation by decreasing the production of EPS and altering the composition of EPS in Staphylococcus epidermidis. Frontiers in Microbiology, 12, 251. https://doi.org/10.3389/fmicb.2021.631058

    Article  Google Scholar 

  37. Soberón, J. R., Sgariglia, M. A., Sampietro, D. A., Quiroga, E. N., & Vattuone, M. A. (2007). Antibacterial activity of plant extracts from northwestern Argentina. Journal of Applied Microbiology, 102(6), 1450–1461. https://doi.org/10.1111/j.1365-2672.2006.03229.x

    Article  CAS  PubMed  Google Scholar 

  38. Silva, L. N., Da Hora, G. C. A., Soares, T. A., Bojer, M. S., Ingmer, H., Macedo, A. J., & Trentin, D. S. (2017). Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Scientific Reports, 7(1), 2823. https://doi.org/10.1038/s41598-017-02712-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spencer, J., Murphy, L. M., Conners, R., Sessions, R. B., & Gamblin, S. J. (2010). Crystal structure of the LasA virulence factor from Pseudomonas aeruginosa: Substrate specificity and mechanism of M23 metallopeptidases. Journal of Molecular Biology, 396(4), 908–923. https://doi.org/10.1016/j.jmb.2009.12.021

    Article  CAS  PubMed  Google Scholar 

  40. Leonard, P. G., Bezar, I. F., Sidote, D. J., & Stock, A. M. (2012). Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. Biochemistry, 51(50), 10035–10043. https://doi.org/10.1021/bi3011785

    Article  CAS  PubMed  Google Scholar 

  41. Ghani, A. (1998). Medicinal plants of Bangladesh: Chemical constituents and uses.

  42. Ahmad, S., Zahiruddin, S., Parveen, B., Basist, P., Parveen, A., & Gaurav, … Ahmad, M. (2021). Indian medicinal plants and formulations and their potential against COVID-19–preclinical and clinical research. Frontiers in Pharmacology, 11, 2470. https://doi.org/10.3389/fphar.2020.578970

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding author

Correspondence to Rina Rani Ray.

Ethics declarations

Ethics Approval

All work has been done under the guidelines of Institutional Ethics Committee MAKAUT: IEC-(18–19)/02 dated 28.12.2019.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Lahiri, D., Nag, M. et al. Analysis of Antibiofilm Activities of Bioactive Compounds from Honeyweed (Leonurus sibiricus) Against P. aeruginosa: an In Vitro and In Silico Approach. Appl Biochem Biotechnol 195, 5312–5328 (2023). https://doi.org/10.1007/s12010-021-03797-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03797-1

Keywords

Navigation