Skip to main content
Log in

Efficient Valorization of Sugarcane Bagasse into Furfurylamine in Benign Deep Eutectic Solvent ChCl:Gly–Water

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, highly efficient production of valuable furan-based chemicals from available and renewable lignocellulosic biomass has attracted more and more attention via a chemoenzymatic route in an environmentally friendly reaction system. In this work, the feasibility of chemoenzymatically catalyzing sugarcane bagasse into furfurylamine with heterogeneous catalyst and ω-transaminase biocatalyst was developed in the deep eutectic solvent (DES) ChCl:Gly–water. Sulfonated Al-Laubanite was firstly synthesized to catalyze sugarcane bagasse to furfural. SEM, BET, XRD, and FT-IR were used to characterize Al-Laubanite. Catalyst Al-Laubanite structure was significantly different from carrier laubanite. High furfural yield (60.9%) was achieved by catalyzing sugarcane bagasse in 20 min at 170 ℃ and pH 1.0 by Al-Laubanite (2.4 wt%) in the presence of ChCl:Gly (20 wt%). Potential catalytic mechanism was proposed under the optimized catalytic condition. In addition, one recombinant E. coli CV harboring ω-transaminase could completely transform biomass-derived furfural to furfurylamine at 40 °C and pH 7.5 using L-alanine as amine donor in ChCl:Gly–water (20:80, wt:wt). This established chemoenzymatic cascade reaction strategy was successfully utilized for valorization of biomass into furan-based chemicals in the benign ChCl:Gly–water system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Jiang, Y., Liu, K., Zhang, H., Wang, Y., Yuan, Q., Su, N., Bao, J., & Fang, X. (2017). Gluconic acid production from potato waste by Gluconobacter oxidans using sequential hydrolysis and fermentation. ACS Sustainable Chemistry & Engineering, 5(7), 6116–6123.

    Article  CAS  Google Scholar 

  2. Li, Y. Y., Li, Q., Zhang, P. Q., Ma, C. L., Xu, J. H., & He, Y. C. (2021). Catalytic conversion of corncob to furfuryl alcohol in tandem reaction with tin-loaded sulfonated zeolite and NADPH-dependent reductase biocatalyst. Bioresource Technology, 320, 124267.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, P., Liao, X., Ma, C., Li, Q., & He, Y. (2019). Chemoenzymatic conversion of corncob to furfurylamine via tandem catalysis with tin-based solid acid and transaminase biocatalyst. ACS Sustainable Chemistry & Engineering, 7(21), 17636–17642.

    Article  CAS  Google Scholar 

  4. Audemar, M., Ciotonea, C., De Oliveira Vigier, K., Royer, S., Ungureanu, A., Dragoi, B., Dumitriu, E., & Jerome, F. (2015). Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable Cobalt/SCBA-15 catalyst. Chemsuschem, 8(11), 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  5. Hu, D. X., Xiao, L., Li, L. Z., Zhong, C., Ju, X., Yan, L. S., & Wu, T. Y. (2016). Effects of ionic liquid 1-ethyl-3-methylimidazolium diethyl phosphate ([Emim]DEP) on cellulase produced by Paenibacillus sp. LLZ1. ACS Sustainable Chemistry & Engineering, 4(9), 4922–4926.

    Article  CAS  Google Scholar 

  6. Wang, Z. K., Shen, X. J., Chen, J. J., Jiang, Y. Q., Hu, Z. Y., Wang, X., & Liu, L. (2018). Lignocellulose fractionation into furfural and glucose by AlCl3-catalyzed DES/MIBK biphasic pretreatment. International Journal of Biological Macromolecules, 117, 721–726.

    Article  CAS  PubMed  Google Scholar 

  7. de Souza, P. M., Silvester, L., da Silva, A. G. M., Fernandes, C. G., Rodrigues, T. G., Paul, S., Camargo, P. H. C., & Wojcieszak, R. (2019). Exploiting the synergetic behavior of PtPd bimetallic catalysts in the selective hydrogenation of glucose and furfural. Catalysts, 9(2), 132.

    Article  CAS  Google Scholar 

  8. He, Y. C., Ding, Y., Ma, C. L., Di, J., Jiang, C., & Li, A. (2017). One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chemistry, 19, 3844–3850.

    Article  CAS  Google Scholar 

  9. Gong, L., Xu, Z. Y., Dong, J. J., Li, H., Han, R. Z., Xu, G. C., & Ni, Y. (2019). Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate. Bioresource Technology, 293, 122065.

    Article  CAS  PubMed  Google Scholar 

  10. Le, G. S., David, G., Claire, C., Frederic, D., & Christophe, L. (2016). Furfural production from D-xylose and xylan by using stable Nafion NR50 and NaCl in a microwave-assisted biphasic reaction. Molecules, 21(8), 1102.

    Article  CAS  Google Scholar 

  11. Dedes, G., Karnaouri, A., & Topakas, E. (2020). Novel routes in transformation of lignocellulosic biomass to furan platform chemicals: From pretreatment to enzyme catalysis. Catalysts, 10(7), 74.

    Article  CAS  Google Scholar 

  12. Hashim, L. H., Halilu, A., Sudarsanam, P., Umar, Y. B., & Bhargava, S. K. (2020). Bifunctional rice husk-derived SiO2-Cu-Al-Mg nanohybrid catalyst for one-pot conversion of biomass-derived furfural to furfuryl acetate. Fuel, 275, 117953.

    Article  CAS  Google Scholar 

  13. Wang, Z. W., Gong, C. J., & He, Y. C. (2020). Improved biosynthesis of 5-hydroxymethyl-2-furancarboxylic acid and furoic acid from biomass-derived furans with high substrate tolerance of recombinant Escherichia coli HMFOMUT whole-cells. Bioresource Technology, 303, 122930.

    Article  CAS  PubMed  Google Scholar 

  14. Wen, M., Zhang, X. Y., Zong, M. H., & Li, N. (2020). Significantly improved oxidation of bio-based furans into furan carboxylic acids using substrate-adapted whole cells. Journal of Energy Chemistry, 41, 20–26.

    Article  Google Scholar 

  15. Xue, X. X., Ma, C. L., Di, J. H., Huo, X. Y., & He, Y. C. (2018). One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. Bioresource Technology, 268, 292–299.

    Article  CAS  PubMed  Google Scholar 

  16. Delbecq, F., Takahashi, Y., Kondo, T., Corbas, C. C., Ramos, E. R., & Len, C. (2018). Microwave assisted efficient furfural production using nano-sized surface-sulfonated diamond powder. Catalysis Communications, 110, 74–78.

    Article  CAS  Google Scholar 

  17. Wang, Y., Delbecq, F., Kwapinski, W., & Len, C. (2017). Application of sulfonated carbon-based catalyst for the furfural production from D-xylose and xylan in a microwave-assisted biphasic reaction. Molecular Catalysis, 438, 167–172.

    Article  CAS  Google Scholar 

  18. Ye, L., Han, Y., Bai, H., & Lu, X. (2020). HZ-ZrP catalysts with adjustable ratio of Brønsted and Lewis acids for the one-pot value-added conversion of biomass-derived furfural. ACS Sustainable Chemistry & Engineering, 8(19), 7403–7413.

    Article  CAS  Google Scholar 

  19. Zhang, T. W., Li, W. Z., An, S. X., Huang, F., Li, X. Z., Liu, J. R., Pei, G., & Liu, Q. Y. (2018). Efficient transformation of corn stover to furfural using p-hydroxybenzene sulfonic acid-formaldehyde resin solid acid. Bioresource Technology, 264, 261–267.

    Article  CAS  PubMed  Google Scholar 

  20. Li, H. L., Ren, J. L., Zhong, L. J., Sun, R. C., & Liang, L. (2015). Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Bioresource Technology, 176, 242–248.

    Article  CAS  PubMed  Google Scholar 

  21. Qi, L., Mui, Y. F., Lo, S. W., Lui, M. Y., Akien, G. R., & Horváth, I. T. (2014). Catalytic conversion of fructose, glucose, and sucrose to 5-(Hydroxymethyl)furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catalysis, 4(5), 1470–1477.

    Article  CAS  Google Scholar 

  22. Espinode los Ángeles Fernández, M. M., Gomez, F. J. V., & Silva, M. F. (2016). Natural designer solvents for greening analytical chemistry. TrAC-Trends in Analytical Chemistry, 76, 126–136.

    Article  CAS  Google Scholar 

  23. Morais, E., Freire, M., Freire, C., Coutinho, J., & Silvestre, A. (2020). Enhanced conversion of xylan into furfural using acidic deep eutectic solvents with dual solvent and catalyst behavior. Chemsuschem, 13(4), 784–790.

    Article  CAS  PubMed  Google Scholar 

  24. Hou, X. D., Li, N., & Zong, M. H. (2013). Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures. ACS Sustainable Chemistry & Engineering, 1(5), 519–526.

    Article  CAS  Google Scholar 

  25. Bystrzanowska, M., & Tobiszewski, M. (2021). Assessment and design of greener deep eutectic solvents – A multicriteria decision analysis. Journal of Molecular Liquids, 321, 114878.

    Article  CAS  Google Scholar 

  26. Xu, G. C., DingJ, C., & Han, R. Z. (2016). Biobutanol production from corn stover hydrolysate pretreated with recycled inoic liquid by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 203, 364–369.

    Article  CAS  PubMed  Google Scholar 

  27. Li, A., Hou, X., Lin, K., Zhang, X., & Fu, M. (2018). Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. Journal of Bioscience and Bioengineering, 126(3), 346–354.

    Article  PubMed  CAS  Google Scholar 

  28. Chen, Z., Reznicek, W. D., & Wan, C. (2018). Aqueous choline chloride: A novel solvent for switchgrass fractionation and subsequent hemicellulose conversion into furfural. ACS Sustainable Chemistry & Engineering, 6(5), 6910–6919.

    Article  CAS  Google Scholar 

  29. Dong, C. L., Wang, H. T., Du, H. C., Peng, J. B., Cai, Y., Guo, S., Zhang, J. L., Smart, C., & Ding, M. Y. (2020). Ru/HZSM-5 as an efficient and recyclable catalyst for reductive amination of furfural to furfurylamine. Molecular Catalysis, 482, 110755.

    Article  CAS  Google Scholar 

  30. Chatterjee, M., Ishizaka, T., & Kawanami, H. (2016). Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: An environmentally friendly approach. Green Chemistry, 18, 487–496.

    Article  CAS  Google Scholar 

  31. Nishimura, S., Mizuhori, K., & Ebitani, K. (2016). Reductive amination of furfural toward furfurylamine with aqueous ammonia under hydrogen over Ru-supported catalyst. Reserach on Chemical Intermediates, 42, 19–30.

    Article  CAS  Google Scholar 

  32. Liu, X. X., Wang, Y. X., Jin, S. W., Li, X., & Zhang, Z. H. (2020). High performance of nitrogen-doped carbon-supported cobalt catalyst for the mild and selective synthesis of primary amines. Arabian Journal of Chemistry, 13(4), 4916–4925.

    Article  CAS  Google Scholar 

  33. Jin, M. J., Sousa, L. D., Schwartz, C., He, Y. X., Sarks, C., Gunawan, C., Balan, V., & Dale, B. E. (2016). Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 18, 957–966.

    Article  CAS  Google Scholar 

  34. Chong, G. G., He, Y. C., Liu, Q. X., Kou, X. Q., Huang, X. J., Di, J. H., & Ma, C. L. (2017). Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system. Bioresource Technology, 241, 726–734.

    Article  CAS  PubMed  Google Scholar 

  35. He, Y. C., Liu, F., Di, J. H., Ding, Y., Gao, D. Z., Zhang, D. P., Tao, Z. C., Chong, G. G., Huang, M. Z., & Ma, C. L. (2016). Effective pretreatment of dilute NaOH-soaked chestnut shell with glycerol–HClO4–water media: Structural characterization, enzymatic saccharification, and ethanol fermentation. Bioprocess and Biosystems Engineering, 39, 533–543.

    Article  CAS  PubMed  Google Scholar 

  36. Loow, Y. L., New, E. K., Yang, G. H., Ang, L. Y., Foo, L. Y. W., & Wu, T. Y. (2017). Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose, 24, 3591–3618.

    Article  CAS  Google Scholar 

  37. Bu, C., Yan, Y., Zou, L., Ouyang, S., Zheng, Z., & Ouyang, J. (2021). Comprehensive utilization of corncob for furfuryl alcohol production by chemo-enzymatic sequential catalysis in a biphasic system. Bioresource Technology, 319, 124156.

    Article  CAS  PubMed  Google Scholar 

  38. He, Y. C., Jiang, C. X., Chong, G. G., Di, J. H., & Ma, C. L. (2018). Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. Bioresource Technology, 247, 121–1220.

    Google Scholar 

  39. Xu, J. X., Zhou, S. Y., Zhao, Y. J., Xia, J., Liu, X. Y., Xu, J. M., He, B. F., Wu, B., & Zhang, J. F. (2017). Asymmetric whole-cell bioreduction of sterically bulky 2-benzoylpyridine derivatives in aqueous hydrophilic ionic liquid media. Chemical Engineering Journal, 316, 919–927.

    Article  CAS  Google Scholar 

  40. Ni, Y., Zhou, J. Y., & Sun, Z. H. (2012). Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp. in an aqueous two-phase system. Process Biochemistry, 47, 1042–1048.

    Article  CAS  Google Scholar 

  41. Liu, Z. Q., Dong, S. C., Yin, H. H., Xue, Y. P., Tang, X. X., Zhang, X. J., He, J. Y., & Zheng, Y. G. (2017). Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system. Bioresource Technology, 229, 26–32.

    Article  CAS  PubMed  Google Scholar 

  42. He, Y. C., Tao, Z. C., Ding, Y., Zhang, D. P., Wu, Y. Q., Liu, F., Xue, Y. F., Wang, C., & Xu, J. H. (2015). Journal of Biotechnology, 203, 62–67.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y., Liu, P., Gao, S., Wang, Z., Luan, P., González-Sabín, J., & Jiang, Y. (2021). Construction of chemoenzymatic cascade reactions for bridging chemocatalysis and Biocatalysis: Principles, strategies and prospective. Chemical Engineering Journal, 420, 127659.

    Article  CAS  Google Scholar 

  44. Xu, P., Du, P. X., Zong, M. H., Li, N., & Lou, W. Y. (2016). Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell. Scientific Reports, 6, 26518.

    Article  CAS  Google Scholar 

  45. Szőllősi, G. (2018). Asymmetric one-pot reactions using heterogeneous chemical catalysis: Recent steps towards sustainable processes. Catalysis Science and Technology, 8(2), 389–422.

    Article  Google Scholar 

  46. Xing, W. R., Xu, G. C., Dong, J. J., Han, R. Z., & Ni, Y. (2018). Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chemical Engineering Journal, 333, 712–720.

    Article  CAS  Google Scholar 

  47. Cai, R. F., Liu, L., Chen, F. F., Li, A., Xu, J. H., & Zheng, G. W. (2020). Reductive amination of biobased levulinic acid to unnatural chiral γ-amino acid using an engineered amine dehydrogenase. ACS Sustainable Chemistry & Engineering, 8(46), 17054–17061.

    Article  CAS  Google Scholar 

  48. Xu, G. C., Dai, W., Wang, Y., Zhang, L., Sun, Z. W., Zhou, J. Y., & Ni, Y. (2020). Molecular switch manipulating Prelog priority of an alcohol dehydrogenase toward bulky-bulky ketones. Molecular Catalysis, 484, 110741.

    Article  CAS  Google Scholar 

  49. Zhang, J. D., Zhao, J. W., Gao, L. L., Chang, H. H., Wei, W. L., & Xu, J. H. (2019). Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. Journal of Biotechnology, 290, 24–32.

    Article  CAS  PubMed  Google Scholar 

  50. Negro, M. J., Manzanares, P., Ballesteros, I., Oliva, J. M., Cabanas, A., & Ballesteros, M. (2003). Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Applied Biochemistry & Biotechnology, 105, 87–100.

    Article  Google Scholar 

  51. Cotana, F., Cavalaglio, G., Gelosia, M., Coccia, V., Petrozzi, A., & Nicolini, A. (2014). Effect of double-step steam explosion pretreatment in bioethanol production from softwood. Applied Biochemistry & Biotechnology, 174(1), 156–167.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 21978072), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB350003), Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University), and Open Project of Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology (No. BEETKB1902).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: J. Di. Data analysis: Nana Zhao. Software: B. Fan. Writing original manuscript: J. Di. Review and revising manuscript: Y. He. Funding acquisition: Y. He, B. Fan, C. Ma. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Yu-Cai He or Cuiluan Ma.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, J., Zhao, N., Fan, B. et al. Efficient Valorization of Sugarcane Bagasse into Furfurylamine in Benign Deep Eutectic Solvent ChCl:Gly–Water. Appl Biochem Biotechnol 194, 2204–2218 (2022). https://doi.org/10.1007/s12010-021-03784-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03784-6

Keywords

Navigation