Skip to main content

Advertisement

Log in

A Novel MIR503HG/miR-497-5p/CCL19 Axis Regulates High Glucose-Induced Cell Apoptosis, Inflammation, and Fibrosis in Human HK-2 Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) play crucial roles in the development of diabetic nephropathy (DN). Here, we explored the activity and mechanism of MIR503 host gene (MIR503HG) in high glucose (HG)-evoked cytotoxicity in HK-2 cells. MIR503HG, microRNA (miR)-497-5p, and C–C motif chemokine ligand 19 (CCL19) were quantified by quantitative real-time PCR (qRT-PCR) and western blot. The direct relationship between miR-497-5p and MIR503HG or CCL19 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Cell viability and apoptosis were evaluated by XTT assay and flow cytometry, respectively. Our data showed that MIR503HG was overexpressed in HG-stimulated HK-2 cells. Knockdown of MIR503HG alleviated HG-evoked cell apoptosis, inflammation, and fibrosis in HK-2 cells. Mechanistically, MIR503HG regulated miR-497-5p expression via a binding site. MIR503HG depletion reduced HG-evoked cell apoptosis, inflammation, and fibrosis in HK-2 cells by up-regulating miR-497-5p. Moreover, miR-497-5p directly targeted and suppressed CCL19. MiR-497-5p-mediated suppression of CCL19 relieved HG-induced cell apoptosis, inflammation, and fibrosis in HK-2 cells. Furthermore, MIR503HG regulated CCL19 expression via miR-497-5p competition. Our findings identify a new MIR503HG/miR-497-5p/CCL19 network in the regulating HG-evoked cell apoptosis, inflammation, and fibrosis in HK-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Umanath, K., & Lewis, J. B. (2018). Update on diabetic nephropathy: Core curriculum 2018. American Journal of Kidney Diseases, 71(6), 884–895.

    Article  Google Scholar 

  2. Tziomalos, K., & Athyros, V. G. (2015). Diabetic nephropathy: New risk factors and improvements in diagnosis. The Review of Diabetic Studies, 12(1–2), 110–118.

    Article  Google Scholar 

  3. Moreno, J. A., Gomez-Guerrero, C., Mas, S., Sanz, A. B., Lorenzo, O., Ruiz-Ortega, M., Opazo, L., Mezzano, S., & Egido, J. (2018). Targeting inflammation in diabetic nephropathy: A tale of hope. Expert Opinion on Investigational Drugs, 27(11), 917–930.

    Article  CAS  Google Scholar 

  4. Calle P., Hotter G. (2020). Macrophage phenotype and fibrosis in diabetic nephropathy. Int J Mol Sci, 21(8).

  5. Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews Genetics, 12(12), 861–874.

    Article  CAS  Google Scholar 

  6. Tay, Y., Rinn, J., & Pandolfi, P. P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505(7483), 344–352.

    Article  CAS  Google Scholar 

  7. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.

    Article  CAS  Google Scholar 

  8. Loganathan, T. S., Sulaiman, S. A., Abdul Murad, N. A., Shah, S. A., Abdul Gafor, A. H., Jamal, R., & Abdullah, N. (2020). Interactions among non-coding RNAs in diabetic nephropathy. Frontiers Pharmacology, 11, 191.

    Article  CAS  Google Scholar 

  9. Yang, J., Shen, Y., Yang, X., Long, Y., Chen, S., Lin, X., Dong, R., & Yuan, J. (2019). Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. American Journal of Physiology. Renal Physiology, 317(5), F1350-f1358.

    Article  CAS  Google Scholar 

  10. Yu R., Zhang Y., Lu Z., Li J., Shi P., Li J. (2019). Long-chain non-coding RNA UCA1 inhibits renal tubular epithelial cell apoptosis by targeting microRNA-206 in diabetic nephropathy. Arch Physiol Biochem 1–9.

  11. Muys B. R., Lorenzi J. C., Zanette D. L., Lima e Bueno Rde B., de Araújo L. F., Dinarte-Santos A. R., Alves C. P., Ramão A., de Molfetta G. A., Vidal D. O., Silva W. A., Jr. (2016). Placenta-enriched LincRNAs MIR503HG and LINC00629 decrease migration and invasion potential of JEG-3 cell line. PLoS One, 11(3), e0151560.

  12. Dao, R., Wudu, M., Hui, L., Jiang, J., Xu, Y., Ren, H., & Qiu, X. (2020). Knockdown of lncRNA MIR503HG suppresses proliferation and promotes apoptosis of non-small cell lung cancer cells by regulating miR-489–3p and miR-625–5p. Pathology, Research and Practice, 216(3), 152823.

    Article  CAS  Google Scholar 

  13. Xu, S., Zhai, S., Du, T., & Li, Z. (2020). LncRNA MIR503HG inhibits non-small cell lung cancer cell proliferation by inducing cell cycle arrest through the downregulation of cyclin D1. Cancer Management and Research, 12, 1641–1647.

    Article  CAS  Google Scholar 

  14. Wei, J., Wang, Z., Zhong, C., Ding, H., Wang, X., & Lu, S. (2021). LncRNA MIR503HG promotes hypertrophic scar progression via miR-143-3p-mediated Smad3 expression. Wound Repair Regen, 29(5), 792–800.

    Article  Google Scholar 

  15. Cheng D., Jiang S., Chen J., Li J., Ao L., Zhang Y. (2019). The increased lncRNA MIR503HG in preeclampsia modulated trophoblast cell proliferation, invasion, and migration via regulating matrix metalloproteinases and NF-κB signaling. Dis Markers, 20194976845.

  16. Cao, X., & Fan, Q. L. (2020). LncRNA MIR503HG promotes high-glucose-induced proximal tubular cell apoptosis by targeting miR-503–5p/Bcl-2 pathway. Diabetes and Metabolic Syndrome Obesity Obesity, 13, 4507–4517.

    Article  CAS  Google Scholar 

  17. Tang, J., Yao, D., Yan, H., Chen, X., Wang, L., & Zhan, H. (2019). The role of microRNAs in the pathogenesis of diabetic nephropathy. International Journal of Endocrinology, 2019, 8719060.

    Article  Google Scholar 

  18. Lv, N., Li, C., Liu, X., Qi, C., & Wang, Z. (2019). miR-34b alleviates high glucose-induced inflammation and apoptosis in human HK-2 cells via IL-6R/JAK2/STAT3 signaling pathway. Medical Science Monitor, 25, 8142–8151.

    Article  CAS  Google Scholar 

  19. Xue, M., Li, Y., Hu, F., Jia, Y. J., Zheng, Z. J., Wang, L., & Xue, Y. M. (2018). High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells. Biochemical and Biophysical Research Communications, 498(1), 38–44.

    Article  CAS  Google Scholar 

  20. Liu, F., Zhang, S., Xu, R., Gao, S., & Yin, J. (2018). Melatonin attenuates endothelial-to-mesenchymal transition of glomerular endothelial cells via regulating miR-497/ROCK in diabetic nephropathy. Kidney & Blood Pressure Research, 43(5), 1425–1436.

    Article  CAS  Google Scholar 

  21. Wang, J., & Zhao, S. M. (2021). LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Science, 264,

    Article  CAS  Google Scholar 

  22. Zeng M., Liu J., Yang W., Zhang S., Liu F., Dong Z., Peng Y., Sun L., Xiao L. (2019). Multiple-microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. Journal of Cellular Physiology.

  23. Yang, F., Cui, Z., Deng, H., Wang, Y., Chen, Y., Li, H., & Yuan, L. (2019). Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Medicine (Baltimore), 98(27), e16225.

    Article  CAS  Google Scholar 

  24. Sun, J., Wang, J., Lu, W., Xie, L., Lv, J., Li, H., & Yang, S. (2020). MiR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in diabetic nephropathy. Clinical and Experimental Pharmacology and Physiology, 47(11), 1850–1860.

    Article  CAS  Google Scholar 

  25. Iwakawa, H. O., & Tomari, Y. (2015). The functions of microRNAs: MRNA decay and translational repression. Trends in Cell Biology, 25(11), 651–665.

    Article  CAS  Google Scholar 

  26. Yang, Y., Lv, X., Fan, Q., Wang, X., Xu, L., Lu, X., & Chen, T. (2019). Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy: Differential expression profile of circulating lncRNA. Clinical Nephrology, 92(1), 25–35.

    Article  CAS  Google Scholar 

  27. Lv, J., Wu, Y., Mai, Y., & Bu, S. (2020). Noncoding RNAs in Diabetic Nephropathy: Pathogenesis, Biomarkers, and Therapy. Journal of Diabetes Research, 2020, 3960857.

    Article  Google Scholar 

  28. Chen, X., Shi, C., Wang, C., Liu, W., Chu, Y., Xiang, Z., Hu, K., Dong, P., & Han, X. (2017). The role of miR-497–5p in myofibroblast differentiation of LR-MSCs and pulmonary fibrogenesis. Scientific Reports, 7, 40958.

    Article  CAS  Google Scholar 

  29. Chen, Q., Yan, J., Xie, W., Xie, W., Li, M., & Ye, Y. (2020). LncRNA LINC00641 sponges miR-497–5p to ameliorate neural injury induced by anesthesia via up-regulating BDNF. Frontiers in Molecular Neuroscience, 13, 95.

    Article  CAS  Google Scholar 

  30. Chen, Y., Kuang, D., Zhao, X., Chen, D., Wang, X., Yang, Q., Wan, J., Zhu, Y., Wang, Y., Zhang, S., Wang, Y., Tang, Q., Masuzawa, M., Wang, G., & Duan, Y. (2016). miR-497–5p inhibits cell proliferation and invasion by targeting KCa3.1 in angiosarcoma. Oncotarget, 7(36), 58148–58161.

    Article  Google Scholar 

  31. Gharib, E., Nasri, N. P., & Reza, Z. M. (2020). miR-497-5p mediates starvation-induced death in colon cancer cells by targeting acyl-CoA synthetase-5 and modulation of lipid metabolism. Journal of Cellular Physiology, 235(7–8), 5570–5589.

    Article  CAS  Google Scholar 

  32. He, Z. (2019). LINC00473/miR-497-5p regulates esophageal squamous cell carcinoma progression through targeting PRKAA1. Cancer Biotherapy & Radiopharmaceuticals, 34(10), 650–659.

    Article  CAS  Google Scholar 

  33. Hou, L., Shi, H., Wang, M., Liu, J., & Liu, G. (2019). MicroRNA-497-5p attenuates IL-1β-induced cartilage matrix degradation in chondrocytes via Wnt/β-catenin signal pathway. International Journal of Clinical and Experimental Pathology, 12(8), 3108–3118.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma J., Lin X., Chen C., Li S., Zhang S., Chen Z., Li D., Zhao F., Yang C., Yin C., Qiu W., Xiao Y., Zhang K., Miao Z., Yang T., Qian A. (2020). Circulating miR-181c-5p and miR-497–5p are potential biomarkers for prognosis and diagnosis of osteoporosis. The Journal of Clinical Endocrinology and Metabolism, 105(5).

  35. Yan, Y., Chen, R., Wang, X., Hu, K., Huang, L., Lu, M., & Hu, Q. (2019). CCL19 and CCR7 expression, signaling pathways, and adjuvant functions in viral infection and prevention. Frontiers in Cell and Developmental Biology, 7, 212.

    Article  Google Scholar 

  36. Adachi, K., Kano, Y., Nagai, T., Okuyama, N., Sakoda, Y., & Tamada, K. (2018). IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nature Biotechnology, 36(4), 346–351.

    Article  CAS  Google Scholar 

  37. Iida Y., Yoshikawa R., Murata A., Kotani H., Kazuki Y., Oshimura M., Matsuzaki Y., Harada M. (2020). Local injection of CCL19-expressing mesenchymal stem cells augments the therapeutic efficacy of anti-PD-L1 antibody by promoting infiltration of immune cells. The Journal for ImmunoTherapy of Cancer, 8(2).

  38. Cheng, H. W., Onder, L., Cupovic, J., Boesch, M., Novkovic, M., Pikor, N., Tarantino, I., Rodriguez, R., Schneider, T., Jochum, W., Brutsche, M., & Ludewig, B. (2018). CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T-cell responses. The Journal of Allergy and Clinical Immunology, 142(4), 1257-1271.e1254.

    Article  CAS  Google Scholar 

  39. Rudnicki M., Perco P., B D. H., Leierer J., Heinzel A., Mühlberger I., Schweibert N., Sunzenauer J., Regele H., Kronbichler A., Mestdagh P., Vandesompele J., Mayer B., Mayer G. (2016). Renal microRNA- and RNA-profiles in progressive chronic kidney disease. European Journal of Clinical Investigation, 46(3), 213-226.

  40. Sato, Y., & Yanagita, M. (2017). Resident fibroblasts in the kidney: A major driver of fibrosis and inflammation. Inflammation and Regeneration, 37, 17.

    Article  Google Scholar 

  41. Iijima, N., Yanagawa, Y., Clingan, J. M., & Onoé, K. (2005). CCR7-mediated c-Jun N-terminal kinase activation regulates cell migration in mature dendritic cells. International Immunology, 17(9), 1201–1212.

    Article  CAS  Google Scholar 

  42. Yang, H., Kan, Q. E., Su, Y., & Man, H. (2019). Long non-coding RNA CASC2 improves diabetic nephropathy by inhibiting JNK pathway. Experimental and Clinical Endocrinology & Diabetes, 127(8), 533–537.

    Article  CAS  Google Scholar 

  43. Qiao, Y., Gao, K., Wang, Y., Wang, X., & Cui, B. (2017). Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway. Experimental and Therapeutic Medicine, 13(6), 3223–3230.

    Article  CAS  Google Scholar 

  44. Qiu, F., Zhang, M. R., Zhou, Z., Pu, J. X., & Zhao, X. J. (2019). lncRNA MIR503HG functioned as a tumor suppressor and inhibited cell proliferation, metastasis and epithelial-mesenchymal transition in bladder cancer. Journal of Cellular Biochemistry, 120(6), 10821–10829.

    Article  CAS  Google Scholar 

  45. Wang, H., Liang, L., Dong, Q., Huan, L., He, J., Li, B., Yang, C., Jin, H., Wei, L., Yu, C., Zhao, F., Li, J., Yao, M., Qin, W., Qin, L., & He, X. (2018). Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics, 8(10), 2814–2829.

    Article  CAS  Google Scholar 

  46. Monteiro, J. P., Rodor, J., Caudrillier, A., Scanlon, J. P., Spiroski, A. M., Dudnakova, T., Pflüger-Müller, B., Shmakova, A., von Kriegsheim, A., Deng, L., Taylor, R. S., Wilson-Kanamori, J. R., Chen, S. H., Stewart, K., Thomson, A., Mitić, T., McClure, J. D., Iynikkel, J., Hadoke, P. W. F., … Baker, A. H. (2021). MIR503HG loss promotes endothelial-to-mesenchymal transition in vascular disease. Circulation Research, 128(8), 1173–1190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Danping Zhang designed and performed the research; Danping Zhang, Xiaoxiao Chen, and Dan Zheng analyzed the data; Danping Zhang wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dan Zheng.

Ethics declarations

Ethics Approval and Consent to Participate

Written informed consents were obtained from all participants, and this study was permitted by the Ethics Committee of Wenling First People’s Hospital of Zhejiang Province.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chen, X. & Zheng, D. A Novel MIR503HG/miR-497-5p/CCL19 Axis Regulates High Glucose-Induced Cell Apoptosis, Inflammation, and Fibrosis in Human HK-2 Cells. Appl Biochem Biotechnol 194, 2061–2076 (2022). https://doi.org/10.1007/s12010-021-03776-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03776-6

Keywords

Navigation