Skip to main content
Log in

The Neutral Protease Immobilization: Physical Characterization of Sodium Alginate-Chitosan Gel Beads

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sodium alginate and chitosan were cross-linked to form composite gel spheres, which were entrapped to immobilize the free neutral protease. The matrix of the immobilized neutral protease was detected and characterized by using Fourier transform infrared spectroscopy and energy-dispersive X-ray. The optimum immobilization conditions were determined by orthogonal test, in which the concentration of sodium alginate was 3.5%, CaCl2 2.5%, chitosan 2.5%, and immobilizing time 1.5 h. Meanwhile, the activities of immobilized neutral protease and free enzyme were compared. The results showed that the pH value of immobilized enzyme was 5–8, the relative activity was above 90%, the free enzyme was above 80%, the relative activity of immobilized enzyme was above 80% in 30–80 °C, and the free enzyme was above 64% in 40–80 °C. The immobilized enzyme is better than the free enzyme in the constant of pH and temperature. The relative activity of immobilized enzyme was 50% after six hydrolysis cycles, and 80% after 11 days of storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Panchagnula, R. (1997). Transdermal delivery of drugs, Indian. Journal of Pharmaceutics, 29, 140–156.

    CAS  Google Scholar 

  2. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70, 1–20.

    Article  CAS  Google Scholar 

  3. Shamo, Z. T. (2021). The bonding nature of the chemical interaction between trypsin and chitosan based carriers in immobilization process depend on entrapped method: A review. International Journal of Biological Macromolecules, 183, 1676–1696. https://doi.org/10.1016/j.ijbiomac.2021.05.059

    Article  CAS  Google Scholar 

  4. Yingjie, D., Jing, G., Liya, Z., Li, M., Ying, H., Xuefang, Z., Zhihong, H., Yanjun, J. (2019). MOF-based nanotubes to hollow nanospheres through protein-induced soft-templating pathways. Advanced Science, 6(6), 1801684. https://doi.org/10.1002/advs.201801684

  5. Tavares, A. P. M., Silva, C. G., Dražić, G., Silva, A. M. T., Loureiro, J. M., & Faria, J. L. (2015). Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermo-dynamic and stability studies. Journal of Colloid and Interface Science, 454, 52–60. https://doi.org/10.1016/j.jcis.2015.04.054

    Article  CAS  PubMed  Google Scholar 

  6. Gao, J., Kong, W., Zhou, L., He, Y., Ma, L., Wang, Y., Yin, L., & Jiang, Y. (2017). Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chemical Engineering Journal, 309, 70–79. https://doi.org/10.1016/j.cej.2016.10.021

    Article  CAS  Google Scholar 

  7. Sirisha, V. L., & Jain, A. (2016). Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Advances in Food and Nutrition Research, 79, 33. https://doi.org/10.1016/bs.afnr.2016.07.004

    Article  CAS  Google Scholar 

  8. Ahmed, S. A., Abdella, M. A. A., El-Sherbiny, G. M., Ibrahim, A. M., El-Shamy, A. R. S., Atalla, M. M., & Hassan, M. E. (2020). Catalytic, kinetic and thermal properties of free and immobilized Bacillus subtilis -MK1 α-amylase on chitosan-magnetic nanoparticles. Biotechnology Reports, 26, e00443. https://doi.org/10.1016/j.btre.2020.e00443

    Article  PubMed  PubMed Central  Google Scholar 

  9. Okura, N. S., Sabi, G. J., Crivellenti, M. C., Gomes, R. A. B., Fernandez-Lafuente, R., & Mendes, A. A. (2020). Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: Mixed ion exchange plus hydrophobic interactions. International Journal of Biological Macromolecules, 163, 550–561. https://doi.org/10.1016/j.ijbiomac.2020.07.021

    Article  CAS  PubMed  Google Scholar 

  10. Pinheiro, B. B., Rios, N. S., Aguado, E. R., Fernandez-Lafuente, R., Freire, T. M., dos Fechine, P. B. A., Santos, J. C. S., & Gonçalves, L. R. B. (2019). Chitosan activated with divinyl sulfone: A new heterofunctional support for enzyme immobilization, application in the immobilization of lipase B from Candida antarctica. International Journal of Biological Macromolecules, 130, 798–809. https://doi.org/10.1016/j.ijbiomac.2019.02.145

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava, B., Singh, H., Khatri, M., Singh, G., & Arya, S. K. (2020). Immobilization of keratinase on chitosan grafted–β–cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry. International Journal of Biological Macromolecules, 165, 1099–1110. https://doi.org/10.1016/j.ijbiomac.2020.10.009

    Article  CAS  PubMed  Google Scholar 

  12. Kamaci, U. D., & Peksel, A. (2020). Fabrication of PVA–chitosan–based nanofibers for phytase immobilization to enhance enzymatic activity. International Journal of Biological Macromolecules, 164, 3315–3322. https://doi.org/10.1016/j.ijbiomac.2020.08.226

    Article  CAS  Google Scholar 

  13. Nataraj, D., Sakkara, S., Meghwal, M., & Reddy, N. (2018). Crosslinked chitosan films with controllable properties for commercial applications. International Journal of Biological Macromolecules, 120, 1256–1264. https://doi.org/10.1016/j.ijbiomac.2018.08.187

    Article  CAS  PubMed  Google Scholar 

  14. Urrutia, P., Bernal, C., Wilson, L., & Illanes, A. (2018). Use of chitosan heterofunctionality for enzyme immobilization: β–galactosidase immobilization for galacto–oligosaccharide synthesis. International Journal of Biological Macromolecules, 116, 182–193. https://doi.org/10.1016/j.ijbiomac.2018.04.112

    Article  CAS  PubMed  Google Scholar 

  15. Esquerdo, V. M., Cadaval, T. R. S., Jr., Dotto, G. L., & Pinto, L. A. A. (2014). Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. Journal of Colloid and Interface Science, 424, 7–15. https://doi.org/10.1016/j.jcis.2014.02.028

    Article  CAS  PubMed  Google Scholar 

  16. Yong, L. K., & David, M. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.06.003

    Article  Google Scholar 

  17. Sandeep, A. C., Jayaranjan, R. K., & Rekha, S. S. (2015). Immobilization of proteins in alginate:Functional properties and applications. Current Organic Chemistry, 19(17), 1732–1754. https://doi.org/10.1016/10.2174/1385272819666150429232110

    Article  Google Scholar 

  18. de Oliveira, R. L., da Silva, M. F., da Silva, S. P., Fernandes, J. V., Cavalcanti, L., Converti, A., & Souza Porto, T. (2020). Immobilization of a commercial Aspergillus aculeatus enzyme preparation with fructosyltransferase activity in chitosan beads: A kinetic/thermodynamic study and fructo-oligosaccharides continuous production in enzymatic reactor. Food and Bioproducts Processing, 122, 169–182. https://doi.org/10.1016/j.fbp.2020.05.001

    Article  CAS  Google Scholar 

  19. Vaz, R., Moreira, P. R. D. S., & Filho, E. X. F. (2016). An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. Journal of Molecular Catalysis B-Enzymatic, 133, 127–135. https://doi.org/10.1016/j.molcatb.08.006

    Article  CAS  Google Scholar 

  20. Murata, Y., Maeda, T., Miyamoto, E., & Kawashima, S. (1993). Preparation of chitosan-reinforced alginate gel beads–effects of chitosan on gel matrix erosion. International Journal of Pharmaceutics, 96(1–3), 139–145. https://doi.org/10.1016/0378-5173(93)90221-Z

    Article  CAS  Google Scholar 

  21. Haas, S., Miura, F. J., Zavala, F., Murata, L. K. A., & Santiago, N. (1996). Oral immunization with a model protein entrapped in microspheres prepared from derivatized alpha-amino acids. Vaccine, 14(8), 1391–1397.

    Article  Google Scholar 

  22. Ribeiro, A. J., & Catarina, C. S. D. F. (2005). Chitosan reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Sciences, 25, 31–40. https://doi.org/10.1016/S0264-410X(97)81489-2

    Article  CAS  PubMed  Google Scholar 

  23. Hartree, E. F. (1972). Determination of protein: A modification of the lowry method that gives a linear photometric response. Analytical Biochemistry, 48, 422–427.

    Article  CAS  Google Scholar 

  24. Yi, W. C., Caleb, A., Eugene, M. O., Elvina, C., Dullah, J. J., & Clarence, M. O. (2019). Parametric study of immobilized cellulase-polymethacrylate particle for the hydrolysis of carboxymethyl cellulose. Biochimie, 157, 204–212. https://doi.org/10.1016/j.biochi.2018.11.019

    Article  CAS  Google Scholar 

  25. Koel, S., Pooja, V., Jaya, S., Sudi, C., & Stefano, C. (2018). Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse. Renewable Energy, 133, 66–76. https://doi.org/10.1016/j.renene.2018.10.014

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by fund of the Industrial Support Plan Project of Gansu Province colleges and universities, No. 2020C-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Bai.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Neutral protease was immobilized on sodium alginate-chitosan beads, which are promising alternatives to improve the efficiency in enzyme immobilization.

• The optimal conditions for the preparation for immobilized neutral protease were obtained by single-factor optimization and orthogonal methods.

• Sodium alginate-chitosan gel beads have regular spherical structure, good thermal stability and reactivity. The relative enzyme activity remained 50% after 6 cycles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Wu, W. The Neutral Protease Immobilization: Physical Characterization of Sodium Alginate-Chitosan Gel Beads. Appl Biochem Biotechnol 194, 2269–2283 (2022). https://doi.org/10.1007/s12010-021-03773-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03773-9

Keywords

Navigation