Skip to main content
Log in

A Calibration-Free Measurement for Monitoring Cellular Calcium Transients Adaptively

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

\({Ca}^{2+}\) plays an important role as an intracellular second messenger in the growth and development of cardiomyocytes (CMs), which can be visualized by calcium imaging and be quantified as calcium transient. Based on calcium imaging, the widely applied measurement method for cellular calcium transient requires laborious and inefficient calibration experiments, as well as affected by photobleaching. In this study, we presented a calibration-free method, based on calcium imaging, to calculate cellular calcium transient and correct photobleaching directly from the target video. We also set up image acquisition and calculation system on custom software, applied to calcium transients monitoring of neonatal rat cardiomyocytes. Results showed that the effect of the new method was similar to that of the traditional one with a Pearson correlation coefficient of 0.99 ± 0.01. Moreover, the residual sum of squares of the two methods was only 26.31 ± 26.28 when the area of the region of interest was greater than 8% of the image area. This result indicated that the new method provided a new concept of cellular \({Ca}^{2+}\) concentration quantification as well as a rapid and adaptive method for monitoring cellular calcium transient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Clapham, D. E. (2007). Calcium signaling. Cell, 131(6), 1047–1058.

    Article  CAS  Google Scholar 

  2. Zhivotovsky, B., & Orrenius, S. (2011). Calcium and cell death mechanisms: A perspective from the cell death community. Cell Calcium, 50(3), 211–221.

    Article  CAS  Google Scholar 

  3. Juhola, M., Penttinen, K., Joutsijoki, H., Varpa, K., Saarikoski, J., Rasku, J., et al. (2015). Signal analysis and classification methods for the calcium transient data of stem cell-derived cardiomyocytes. Computers in Biology and Medicine, 61, 1–7.

    Article  CAS  Google Scholar 

  4. Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415(6868), 198–205.

    Article  CAS  Google Scholar 

  5. Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology, 70, 23–49.

    Article  CAS  Google Scholar 

  6. Mutig, N., Geers-Knoerr, C., Piep, B., Pahuja, A., Vogt, P. M., Brenner, B., et al. (2013). Lipoteichoic acid from Staphylococcus aureus directly affects cardiomyocyte contractility and calcium transients. Molecular Immunology, 56(4), 720–728.

    Article  CAS  Google Scholar 

  7. Pereira, L., Ruiz-Hurtado, G., Rueda, A., Mercadier, J. J., Benitah, J. P., & Gomez, A. M. (2014). Calcium signaling in diabetic cardiomyocytes. Cell Calcium, 56(5), 372–380.

    Article  CAS  Google Scholar 

  8. Addis, R. C., Ifkovits, J. L., Pinto, F., Kellam, L. D., Esteso, P., Rentschler, S., et al. (2013). Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. Journal of Molecular and Cellular Cardiology, 60, 97–106.

    Article  CAS  Google Scholar 

  9. Lock, J. T., Parker, I., & Smith, I. F. (2015). A comparison of fluorescent Ca(2)(+) indicators for imaging local Ca(2)(+) signals in cultured cells. Cell Calcium, 58(6), 638–648.

    Article  CAS  Google Scholar 

  10. Tsien, R. Y., Pozzan, T., & Rink, T. J. (1982). Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. Journal of Cell Biology, 94(2), 325–334.

    Article  CAS  Google Scholar 

  11. Burchiel, S. W., Edwards, B. S., Kuckuck, F. W., Lauer, F. T., Prossnitz, E. R., Ransom, J. T., et al. (2000). Analysis of free intracellular calcium by flow cytometry: Multiparameter and pharmacologic applications. Methods, 21(3), 221–230.

    Article  CAS  Google Scholar 

  12. Glaser, T., Shimojo, H., Ribeiro, D. E., Martins, P. P. L., Beco, R. P., Kosinski, M., et al. (2020). ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington’s disease: A novel approach for cell clock research. Molecular Psychiatry, 26(6), 2633–2650.

    Article  Google Scholar 

  13. Illaste, A., Wullschleger, M., Fernandez-Tenorio, M., Niggli, E., & Egger, M. (2019). Automatic detection and classification of Ca(2+) release events in line- and frame-scan images. Biophysical Journal, 116(3), 383–394.

    Article  CAS  Google Scholar 

  14. Haller, H., Lindschau, C., Quass, P., Distler, A., & Luft, F. C. (1994). Nuclear calcium signaling is initiated by cytosolic calcium surges in vascular smooth muscle cells. Kidney International, 46(6), 1653–1662.

    Article  CAS  Google Scholar 

  15. Tanaka, H., Kawanishi, T., Kato, Y., Nakamura, R., & Shigenobu, K. (1996). Restricted propagation of cytoplasmic Ca2+ oscillation into the nucleus in guinea pig cardiac myocytes as revealed by rapid scanning confocal microscopy and indo-1. Japanese Journal of Pharmacology, 70(3), 235–242.

    Article  CAS  Google Scholar 

  16. Gussak, G., Marszalec, W., Yoo, S., Modi, R., O’Callaghan, C., Aistrup, G. L., et al. (2020). Triggered Ca(2+) waves induce depolarization of maximum diastolic potential and action potential prolongation in dog atrial myocytes. Circ Arrhythm Electrophysiol, 13(6), e008179.

    Article  CAS  Google Scholar 

  17. Coppini, R., Santini, L., Olivotto, I., Ackerman, M. J., & Cerbai, E. (2020). Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovascular Research, 116(9), 1585–1599.

    Article  CAS  Google Scholar 

  18. Shkryl VM (2020). Error correction due to background subtraction in ratiometric calcium measurements with CCD camera. Heliyon, 6(6), e04180.

  19. Sebille, S., Cantereau, A., Vandebrouck, C., Balghi, H., Constantin, B., Raymond, G., et al. (2005). Calcium sparks in muscle cells: Interactive procedures for automatic detection and measurements on line-scan confocal images series. Computer Methods and Programs in Biomedicine, 77(1), 57–70.

    Article  CAS  Google Scholar 

  20. Zavala-Tecuapetla, C., Tapia, D., Rivera-Angulo, A. J., Galarraga, E., & Pena-Ortega, F. (2014). Morphological characterization of respiratory neurons in the pre-Botzinger complex. Progress in Brain Research, 209, 39–56.

    Article  Google Scholar 

  21. Sakaguchi, H., Ozaki, Y., Ashida, T., Matsubara, T., Oishi, N., Kihara, S., et al. (2019). Self-organized synchronous calcium transients in a cultured human neural network derived from cerebral organoids. Stem Cell Reports, 13(3), 458–473.

    Article  CAS  Google Scholar 

  22. da Silva, A. R., Neri, E. A., Turaca, L. T., Dariolli, R., Fonseca-Alaniz, M. H., Santos-Miranda, A., et al. (2020). NOTCH1 is critical for fibroblast-mediated induction of cardiomyocyte specialization into ventricular conduction system-like cells in vitro. Scientific reports, 10(1), 16163.

    Article  Google Scholar 

  23. Zhang, X. H., Wei, H., Saric, T., Hescheler, J., Cleemann, L., & Morad, M. (2015). Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium, 57(5–6), 321–336.

    Article  CAS  Google Scholar 

  24. Jensen, L., Neri, E., Bassaneze, V., De Almeida Oliveira, N. C., Dariolli, R., Turaca, L. T., et al. (2018). Integrated molecular, biochemical, and physiological assessment unravels key extraction method mediated influences on rat neonatal cardiomyocytes. Journal of Cellular Physiology, 233(7), 5420–5430.

    Article  CAS  Google Scholar 

  25. Grynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry, 260(6), 3440–3450.

    Article  CAS  Google Scholar 

  26. Tong, J., Qi, Y., Wang, X., Yu, L., Su, C., Xie, W., et al. (2017). Cell micropatterning reveals the modulatory effect of cell shape on proliferation through intracellular calcium transients. Biochimica et Biophysica Acta, Molecular Cell Research, 1864(12), 2389–2401.

    Article  CAS  Google Scholar 

  27. Scheenen, W. J., Makings, L. R., Gross, L. R., Pozzan, T., & Tsien, R. Y. (1996). Photodegradation of indo-1 and its effect on apparent Ca2+ concentrations. Chemistry & Biology, 3(9), 765–774.

    Article  CAS  Google Scholar 

  28. Sfakis, L., Kamaldinov, T., Larsen, M., Castracane, J., & Khmaladze, A. (2016). Quantification of confocal images using LabVIEW for tissue engineering applications. Tissue Eng Part C-Me, 22(11), 1028–1037.

    Article  CAS  Google Scholar 

  29. Li, Z., Yang, G., Huang, H., Xiao, Z., & Ren, X. (2015). Biphasic pulsed electrical stimulation promotes the differentiation of adipose-derived stem cells into cardiomyocyte-like cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 31(9), 1200–1210.

    CAS  PubMed  Google Scholar 

  30. Takahashi, A., Camacho, P., Lechleiter, J. D., & Herman, B. (1999). Measurement of intracellular calcium. Physiological Reviews, 79(4), 1089–1125.

    Article  CAS  Google Scholar 

  31. Kao, J. P. (1994). Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods in Cell Biology, 40, 155–181.

    Article  CAS  Google Scholar 

  32. Henry, A. D., MacQuaide, N., Burton, F. L., Rankin, A. C., Rowan, E. G., & Drummond, R. M. (2018). Spontaneous Ca(2+) transients in rat pulmonary vein cardiomyocytes are increased in frequency and become more synchronous following electrical stimulation. Cell Calcium, 76, 36–47.

    Article  CAS  Google Scholar 

  33. Uhlen P (2004). Spectral analysis of calcium oscillations. Sci STKE, 2004(258), pl15.

  34. Szymanska, A. F., Heylman, C., Datta, R., Gratton, E., & Nenadic, Z. (2016). Automated detection and analysis of depolarization events in human cardiomyocytes using MaDEC. Computers in Biology and Medicine, 75, 109–117.

    Article  CAS  Google Scholar 

  35. Bagur, R., & Hajnoczky, G. (2017). Intracellular Ca(2+) Sensing: Its role in calcium homeostasis and signaling. Molecular Cell, 66(6), 780–788.

    Article  CAS  Google Scholar 

  36. Henry, A. D., MacQuaide, N., Burton, F. L., Rankin, A. C., Rowan, E. G., & Drummond, R. M. (2018). Spontaneous Ca2+ transients in rat pulmonary vein cardiomyocytes are increased in frequency and become more synchronous following electrical stimulation. Cell Calcium, 76, 36–47.

    Article  CAS  Google Scholar 

  37. Friedmann, K. S., Bozem, M., & Hoth, M. (2019). Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Seminars in Cell & Developmental Biology, 94, 84–93.

    Article  CAS  Google Scholar 

  38. Szewczyk, A., Saczko, J., & Kulbacka, J. (2020). Apoptosis as the main type of cell death induced by calcium electroporation in rhabdomyosarcoma cells. Bioelectrochemistry, 136, 107592.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China (61571314) and the Science and Technology Department of Sichuan Province, China (2018SZ0384, 2020YFG0081).

Author information

Authors and Affiliations

Authors

Contributions

LG, JY, and GY participated in the design and coordination of the study and software, performed experiments, analyzed data, and contributed to the writing of the manuscript. ZHX, LH, JZ, and HZ participated in the design and coordination of the study as well as helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Yang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare that they consent to participate.

Consent for Publication

The authors declare that they consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Ye, J., Xiao, Z. et al. A Calibration-Free Measurement for Monitoring Cellular Calcium Transients Adaptively. Appl Biochem Biotechnol 194, 2236–2250 (2022). https://doi.org/10.1007/s12010-021-03771-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03771-x

Keywords

Navigation