Skip to main content
Log in

Engineering a Minimal Leucine-rich Repeat IgG-binding Module

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sea lamprey immunization can yield leucine-rich repeat (LRR) protein binders analogous to globular antibodies developed from mammals. A novel minimal LRR was discovered through lamprey immunization with human immunoglobulin G Fc domain (IgG Fc). Initial attempts to solubly express this LRR protein, VLRB.IgGFc, in Escherichia coli proved challenging, so it was analyzed using the cell-free method ribosome display. In ribosome display, VLRB.IgGFc was found to bind specifically to the Fc domain of IgG, with little observed cross-reactivity to IgA or IgM. The minimal repeat protein architecture of VLRB.IgGFc may facilitate modular LRR extensions to incorporate additional or augmented functionality within a continuous, structurally defined scaffold. We exploited this modularity to design a chimera of a well-characterized, soluble LRR repebody and the initially insoluble VLRB.IgGFc to produce soluble Repe-VLRB.IgGFc. The minimal IgG Fc–binding module, Repe-VLRB.IgGFc, and future-engineered variants thereof should be useful additions to the biotechnological toolbox for detecting, purifying, or targeting IgGs. More generally, this two-step approach of minimal LRR binder discovery via sea lamprey immunization followed by modular augmentation of functionality may be of general utility in protein engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Available upon request.

Code Availability

Not applicable.

References

  1. Urquhart, L. (2020). Top companies and drugs by sales in 2019. Nature Reviews Drug Discovery, 19, 228.

    Article  CAS  PubMed  Google Scholar 

  2. Beck, A., Goetsch, L., Dumontet, C., & Corvaïa, N. (2017). Strategies and challenges for the next generation of antibody-drug conjugates. Nature Reviews Drug Discovery, 16, 315–337.

    Article  CAS  PubMed  Google Scholar 

  3. Mahmood, T., & Yang, P.-C. (2012). Western blot: Technique, theory, and trouble shooting. North American Journal of Medical Sciences, 4, 429–434.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wild, D. (2013). The immunoassay handbook (4th ed.). Elsevier.

    Google Scholar 

  5. Rigi, G., Ghaedmohammadi, S., & Ahmadian, G. (2019). A comprehensive review on staphylococcal protein A (SpA): Its production and applications. Biotechnology and Applied Biochemistry, 66, 454–464.

    Article  CAS  PubMed  Google Scholar 

  6. Ramlau, J. (1987). Use of secondary antibodies for visualization of bound primary reagents in blotting procedures. Electrophoresis, 8, 398–402.

    Article  CAS  Google Scholar 

  7. Antibody binding affinities of Protein A, Protein G, Protein L and jacalin. (2021). Available from: www.abcam.com. Accessed January 1, 2021.

  8. Boyle, M. D. P. (1990). Bacterial immunoglobulin-binding proteins: Applications in immunotechnology (1st ed., Vol. 2). American Press.

    Google Scholar 

  9. Kang, H. J., Choe, W., Min, J.-K., Lee, Y., Kim, B. M., & Chung, S. J. (2016). Cyclic peptide ligand with high binding capacity for affinity purification of immunoglobulin G. Journal of Chromatography A, 1466, 105–112.

    Article  CAS  PubMed  Google Scholar 

  10. Stumpp, M. T., Binz, H. K., & Amstutz, P. (2008). DARPins: A new generation of protein therapeutics. Drug Discovery Today, 13, 695–701.

    Article  CAS  PubMed  Google Scholar 

  11. Pancer, Z., Amemiya, C. T., Ehrhardt, G. R. A., Ceitlin, J., Gartland, G. L., & Cooper, M. D. (2004). Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 420, 174–180.

    Article  Google Scholar 

  12. Tasumi, S., Velikovsky, C. A., Xu, G., Gai, S. A., Wittrup, K. D., Flajnik, M. F., Mariuzza, R. A., & Pancer, Z. (2009). High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proceedings of the National Academy of Sciences USA, 106, 12891–12896.

    Article  CAS  Google Scholar 

  13. Lee, S.-C., Park, K., Han, J., Lee, J., Kim, H. J., Hong, S., Heu, W., Kim, Y. J., Ha, J.-S., Lee, S.-G., Cheong, H.-K., Jeon, Y. H., Kim, D., & Kim, H.-K. (2012). Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Proceedings of the National Academy of Sciences USA, 109, 3299–3304.

    Article  CAS  Google Scholar 

  14. Ng, D. T. W., & Sarkar, C. A. (2012). Model-guided ligation strategy for optimal assembly of DNA libraries. Protein Engineering, Design & Selection, 25, 669–678.

    Article  CAS  Google Scholar 

  15. Alder, M. N., Rogozin, I. B., Iyer, L. M., Glazko, G. V., Cooper, M. D., & Pancer, Z. (2005). Diversity and function of adaptive immune receptors in a jawless vertebrate. Science, 310, 1970–1973.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, J. S., Kim, J., Im, S. P., Kim, S. W., Jung, J. W., Lazarte, J. M. S., Lee, J. H., Thompson, K. D., & Jung, T. S. (2018). Dual functionality of lamprey VLRB C-terminus (LC) for multimerization and cell surface display. Molecular Immunology, 104, 54–60.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: A better web interface. Nucleic Acids Research, 36, W5–W9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Afzel, A. J., & Lightfoot, D. A. (2007). Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: Preparation for a functional analysis. Protein Expression and Purification, 53, 346–355.

    Article  Google Scholar 

  19. Schimmele, B., & Plückthun, A. (2005). Identification of a functional epitope of the Nogo receptor by a combinatorial approach using ribosome display. Journal of Molecular Biology, 352, 229–241.

    Article  CAS  PubMed  Google Scholar 

  20. Markou, G. C. & Sarkar, C. A. A cell-free approach to identify binding hotspots in plant immune receptors. In Revision.

  21. Courtemanche, N., & Barrick, D. (2008). The leucine-rich repeat domain of Internalin B folds along a polarized N-terminal pathway. Structure, 16, 705–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo, M., Velikovsky, C. A., Yang, X., Siddiqui, M. A., Hong, X., Barchi, J. J., Jr., Gildersleeve, J. C., Pancer, Z., & Mariuzza, R. A. (2013). Recognition of the Thomsen-Friedenreich pancarcinoma carbohydrate antigen by a lamprey variable lymphocyte receptor. Journal of Biological Chemistry, 228, 23597–23606.

    Article  Google Scholar 

  24. Duarte, D. P., Lamontanara, A. J., La Sala, G., Jeong, S., Sohn, Y.-K., Panjkovich, A., Georgeon, S., Kükenshöner, T., Marcaida, M. J., Pojer, F., De Vivo, M., Svergun, D., Kim, H.-S., Dal Peraro, M., & Hantschel, O. (2020). Btk SH2-kinase interface is critical for allosteric kinase activation and its targeting inhibits B-cell neoplasms. Nature Communications, 11, 1–15.

    Article  Google Scholar 

  25. Zahnd, C., Sarkar, C. A., & Plückthun, A. (2010). Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Engineering, Design & Selection, 23, 175–184.

    Article  CAS  Google Scholar 

  26. Waldo, G. S., Standish, B. M., Berendzen, J., & Terwilliger, T. C. (1999). Rapid protein-folding assay using green fluorescent protein. Nature Biotechnology, 17, 691–695.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, T., Badran, A. H., Huang, T. P., & Liu, D. R. (2018). Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology, 14, 972–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heu, W., Choi, J.-M., Lee, J.-J., Jeong, S., & Kim, H.-S. (2014). Protein binder for affinity purification of human immunoglobulin antibodies. Analytical Chemistry, 86, 6019–6025.

    Article  CAS  PubMed  Google Scholar 

  29. Kloss, E., & Barrick, D. (2009). C-terminal deletion of leucine-rich repeats from YopM reveals a heterogeneous distribution of stability in a cooperatively folded protein. Protein Science, 18, 1948–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, K., Shen, B. W., Parmeggiani, F., Huang, P.-S., Stoddard, B. L., & Baker, D. (2015). Control of repeat-protein curvature by computational protein design. Nature Structural & Molecular Biology, 22, 167–174.

    Article  CAS  Google Scholar 

  31. Sun, Y., Li, L., Macho, A. P., Han, Z., Hu, Z., Zipfel, C., Zhou, J.-M., & Chai, J. (2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science, 342, 624–628.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christina Larson, Sally Mayasich, and Ben Clarke for their support in sea lamprey husbandry and handling.

Funding

This work was supported by a 3M Science and Technology Fellowship (G.C.M) and by the University of Minnesota (C.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

G.C.M. and C.A.S. conceived the idea; G.C.M. and A.O. carried out the experiments and analyses; G.C.M. and C.A.S. wrote the manuscript.

Corresponding author

Correspondence to Casim A. Sarkar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markou, G.C., Ohoka, A. & Sarkar, C.A. Engineering a Minimal Leucine-rich Repeat IgG-binding Module. Appl Biochem Biotechnol 194, 1636–1644 (2022). https://doi.org/10.1007/s12010-021-03768-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03768-6

Keywords

Navigation