Skip to main content

Advertisement

Log in

Bio-efficacy of Soil Actinomycetes and an Isolated Molecule 1,2-Benzenedicarboxylic Acid from Nonomuraea sp. Against Culex quinquefasciatus Say and Aedes aegypti L. Mosquitoes (Diptera: Culicidae)

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vector-borne diseases such as filariasis and dengue that contribute significantly to disease burden, death, poverty, and social frailty are still a major public healthcare problem worldwide. Currently, synthetic chemicals have been used in mosquito control programs. However, repeated use of chemical insecticides causes environmental pollution and harmful effects on non-target organisms. Therefore, alternative ecofriendly sources from biological source are urgently needed to manage mosquitoes. In this respect, the present study was aimed to evaluate mosquito larvicidal and pupicidal activities of 22 crude extracts of soil actinomycetes on Culex quinquefasciatus and Aedes aegypti and to identify the active molecule. Briefly, the crude ethyl acetate extract and fractions were tested at 62.5, 125, 250, and 500 ppm and 2.5, 5.0, 7.5, and 10.0 ppm concentrations on larval and pupal stages of Cx. quinquefasciatus and Ae. aegypti. The larval and pupal mortality was assessed after 24 h of treatment. Among the 22 isolates screened, Nonomuraea sp. VAS-16 exhibited significant larvicidal and pupicidal activities against the tested mosquito species. Among the 18 fractions screened, fraction-6 showed strong larvicidal and pupicidal activities with the LC50 and LC90 values of 9.1, 18.7, 9.82, and 22.85 ppm against the larvae and LC50 and LC90 values of 10.5, 23.1, 12.3, and 24.13 ppm against the pupae of Cx. quinquefasciatus and Ae. aegypti, respectively. Fascinatingly, the isolated compound 1,2-benzenedicarboxylic acid from fraction-6 at 0.5, 1.0, 1.5, and 2.0 ppm concentration recorded lower LC50 and LC90 values of 4.27, 14.90, 4.67, and 11.90 ppm against the larvae and LC50 and LC90 values of 4.58, 12.06, 5.36, and 13.07 ppm against the pupae of Cx. quinquefasciatus and Ae. aegypti, respectively. On the other hand, the compound recorded less ovicidal activity of 11.0% and 10.3% at 2 ppm against the eggs of Cx. quinquefasciatus and Ae. aegypti, respectively. The present study clearly shows that the crude extract and the compound from Nonomuraea sp. VAS-16 can be used as an effective biopesticide in integrated mosquito management program.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of economic entomology, 18, 265–267. https://doi.org/10.1093/jee/18.2.265a

    Article  CAS  Google Scholar 

  2. Agrawal, V. K., & Sashindran, V. K. (2006). Lymphatic filariasis in India: Problems, challenges and new initiatives. Medical Journal of Armed Forces India, 62(4), 359–362. https://doi.org/10.1016/S0377-1237(06)80109-7

    Article  CAS  Google Scholar 

  3. Antonio, G. E., Sánchez, D., Williams, T., & Marina, C. F. (2009). Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito Aedes aegypti.. Pest Management Science, 65(3), 323–326. https://doi.org/10.1002/ps.1683

    Article  CAS  PubMed  Google Scholar 

  4. Anyaele, O. O., & Amusan, A. A. S. (2003). Toxicity of hexanoic extracts of Dennettia tripetala (G. Baxer) on larvae of Aedes aegypti (L.). African Journal of Biomedical Research, 6, 49–53. https://doi.org/10.4314/ajbr.v6i1.54023

    Article  Google Scholar 

  5. Balakrishnan, S., Santhanam, P., & Srinivasan, M. (2017). Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti and Anopheles stephensi. Journal of Parasitic Diseases, 41(2), 387–394. https://doi.org/10.1007/s12639-016-0812-3

    Article  CAS  PubMed  Google Scholar 

  6. Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., Moyes, C. L., Farlow, A. W., Scott, T. W., & Hay, S. L. (2012). Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Diseases, 6, e1760. https://doi.org/10.1371/journal.pntd.0001760

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen, C.D., Nazni, W.A., Lee, H.L., Norma-Rashid, Y., Lardizabal, M.L., Sofian-Azirun, M., (2013). Temephos resistance in field Aedes (Stegomyia) albopictus (Skuse) from Selangor, Malaysia. Tropical Biomedicine, 30, 220–230. https://pubmed.ncbi.nlm.nih.gov/23959487/.

  8. Dhanasekaran, D., Sakthi, V., Thajuddin, N., Panneerselvam, A. (2010). Preliminary evaluation of Anopheles mosquito larvicidal efficacy of mangrove actinobacteria. International Journal of Applied Biology and Pharmaceutical Technology, 1, 374–381. https://www.fortunejournals.com/ijabpt/pdf/1622-Mosquito%20larvicidal-%20paper.pdf.

  9. Feng, R., & Isman, M. (1995). Experientia, 51, 831–833. https://doi.org/10.1007/BF01922438

    Article  CAS  Google Scholar 

  10. Feng, M. L., Li, Y. F., Zhu, H. J., Ni, J. P., Xi, B. B., & Zhao, L. (2011). Design, synthesis, insecticidal activity and structure–activity relationship of 3,3-dichloro-2-propenyloxy-containing phthalic acid diamide structures. Pest Management Science, 68, 986–994. https://doi.org/10.1002/ps.3243

    Article  CAS  Google Scholar 

  11. Feng, M. L., Li, Y. F., Zhu, H. J., Zhao, L., Xi, B. B., & Ni, J. P. (2010). Synthesis, insecticidal activity, and structure-activity relationship of trifluoromethyl-containing phthalic acid diamide structures. Journal of Agricultural and Food Chemistry, 58(20), 10999–11006. https://doi.org/10.1021/jf1021708

    Article  CAS  PubMed  Google Scholar 

  12. Fortin, C., Maire, A., Leclair, R. (1987). The residual effect of temephos (Abate 4-E) on nontarget communities. Journal of the American Mosquito Control Association, 3(2), 282–288. https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V03_N2_P282-288.pdf.

  13. Gabrieli, P., Caccia, S., Varotto-Boccazzi, I., Arnoldi, I., Barbieri, G., Comandatore, F., & Epis, S. (2021). Mosquito trilogy: Microbiota, immunity and pathogens, and their implications for the control of disease transmission. Frontiers in Microbiology, 12, 630438. https://doi.org/10.3389/fmicb.2021.630438

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghosh, A., Chowdhury, N., Chandra, G. (2012). Plant extracts as potential mosquito larvicides. Indian Journal of Medical Research, 135(5), 581–598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401688/pdf/IJMR-135-581.pdf.

  15. Harrington, L. C., Scott, T. W., Lerdthusnee, K., Coleman, R. C., Costero, A., Clark, G. G., Jones, J. J., Kitthawee, S., Kittayapong, P., Sithiprasasna, R., & Edman, J. D. (2005). Dispersal of the dengue vector Aedes aegypti within and between rural com-munities. The American Journal of Tropical Medicine and Hygiene, 72, 209–220. https://doi.org/10.4269/ajtmh.2005.72.209

    Article  PubMed  Google Scholar 

  16. Kannathasan, K., Senthilkumar, A., & Venkatesalu, V. (2011). Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn. Acta Tropica, 120, 115–118. https://doi.org/10.1016/j.actatropica.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S. H., Ohb, H. W., Fanga, Y., Ana, S. B., Parkc, D. S., Songd, H. H., Ohd, S. R., Kime, S. Y., Kimf, S., Kimf, N., Raikhelg, A. S., Jea, Y. H., & Shina, S. W. (2015). Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. PNAS, 112(6), 1733–1738. https://doi.org/10.1073/pnas.1424386112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mapossa, A. B., Focke, W. W., Tewo, R. K., Androsch, R., & Kruger, T. (2021). Mosquito-repellent controlled-release formulations for fighting infectious diseases. Malaria Journal, 20, 165. https://doi.org/10.1186/s12936-021-03681-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paixão, E. S., Teixeira, M. G., & Rodrigues, L. C. (2018). Zika, chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases. BMJ Global Health, 3(Suppl 1), e000530. https://doi.org/10.1136/bmjgh-2017-000530

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pener, M., & Dhadialla, T.S. (2012). An overview of insect growth disruptors: Applied aspects. eds Dhadialla TS. Advances in Insect Physiology (Elsevier, Oxford), Vol 43, pp 1–162. https://agris.fao.org/agris-search/search.do?recordID=US201700019246.

  21. Rascalou, G., Pontier, D., Menu, F., & Gourbiere, S. (2012). Emergence and prevalence of human vector borne diseases in sink vector population. PLoS One, 7(5), e36858. https://doi.org/10.1371/journal.pone.0036858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reegan, A. D., Bentrock, B. B., Asharaja, A. C., Tennyson, S., & Raveen, R. (2021). Toxicity and sub-lethal effects of temephos, lambda-cyhalothrin and cypermethrin on predatory insect Diplonychus rusticus Fabricius (Hemiptera: Belostomatidae). International Journal of Tropical Insect Science, 41, 841–848. https://doi.org/10.1007/s42690-020-00274-w

    Article  Google Scholar 

  23. Reegan, A. D., Ceasar, S. A., Paulraj, M. G., Ignacimuthu, S., & Al-Dhabi, N. A. (2016). Current status of genome editing in vector mosquitoes: A review. Bioscience Trends, 10(6), 424–432. https://doi.org/10.5582/bst.2016.01180

    Article  CAS  PubMed  Google Scholar 

  24. Reegan, A. D., Gandhi, M. R., Paulraj, M. G., Balakrishna, K., & Ignacimuthu, S. (2014). Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Acta Tropica, 11(139C), 67–76. https://doi.org/10.1016/j.actatropica.2014.07.002

    Article  CAS  Google Scholar 

  25. Reegan, A. D., Kannan, R. V., Paulraj, M. G., & Ignacimuthu, S. (2014). Synergistic effects of essential oil-based cream formulations against Culex quinquefasciatus say and Aedes aegypti L. (Diptera:Culicidae). Journal of Asia Pacific Entomology, 17(3), 327–331. https://doi.org/10.1016/j.aspen.2014.02.008

    Article  CAS  Google Scholar 

  26. Reegan, A. D., Kumar, P. S., Asharaja, A. C., Devi, C., Jameela, S., Balakrishna, K., & Ignacimuthu, I. (2021). Larvicidal and ovicidal activities of phenyl acetic acid isolated from Streptomyces collinus against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Experimental Parasitology, 226–227, 108120. https://doi.org/10.1016/j.exppara.2021.108120

    Article  CAS  PubMed  Google Scholar 

  27. Sandhanam, S. D., Ganesan, P., Stalin, A., Michael, G. P., Balakrishna, K., Pandikumar, P., Ignacimuthu, I., & Naif, A. A. (2018). Effect of compound isolated from Lawsonia inermis (L.) (Myrtales: Lythraceae) on the immature stages of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) and its docking analysis with acetylcholinesterase (AChE1). Biocatalysis and Agricultural Biotechnology, 15, 210–218. https://doi.org/10.1016/j.bcab.2018.06.004

    Article  Google Scholar 

  28. Saravana Kumar, P., Stalin, A., Sundaram, R. L., Duraipandiyan, V., Al-Dhabi, N. A., Yuvaraj, P., Balakrishna, K., & Ignacimuthu, S. (2017). Isolation of chemical constituents from Nonomuraea species: In vitro and in silico evaluation of its antibacterial properties. Beni-Suef University Journal of Basic and Applied Sciences, 6, 15–23. https://doi.org/10.1016/j.bjbas.2016.12.004

    Article  Google Scholar 

  29. Saurav, K., Rajakumar, G., Kannabiran, K., Rahuman, A.A., Velayutham, K., Elango, G., Kamaraj, C., Zahir, A.A. (2013). Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitology Research, 112(1), 215–226. https://doi.org/10.1007/s00436-011-2682-z

  30. Sundarapandian, S., Sundaram, M.D., Tholkappian, P., Balasubramanian, V. (2002). Mosquitocidal properties of indigenous fungi and actinomycetes against Culex quinquefasciatus Say. Journal of Biological Control, 16, 89–91. https://qqq.vietsciences.org/research/003/854/003854785.php.

  31. Tikar, S. N., Kumar, A., Prasad, G. B., & Prakash, S. (2009). Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitology Research, 105, 57–63. https://doi.org/10.1007/s00436-009-1362-8

    Article  CAS  PubMed  Google Scholar 

  32. WHO, (2005). World Health Organization, Guidelines for laboratory and field testing of mosquito larvicides. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/13 pp. https://apps.who.int/iris/handle/10665/69101.

  33. WHO, (2021). World Health Organization, Fact sheet. Lymphatic filariasis. WHO, Geneva, https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis.

Download references

Acknowledgements

The authors are grateful to lab attendants, who are involved in maintaining cyclic colony of mosquitoes and helped in conducting all the experiments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Isolation of soil actinomycetes, media preparation, isolation and identification of active compound, bio-assay experiments, data collection, and data analysis were performed by Pachaiyappan Saravana Kumar and Appadurai Daniel Reegan. Spectroscopic analysis of the compound was performed by Kedike Balakrishna. The first draft of the manuscript was written by Appadurai Daniel Reegan. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Pachaiyappan Saravana Kumar or Appadurai Daniel Reegan.

Ethics declarations

Ethics Approval

This research article does not contain any studies with human participants or animals performed by any of the authors. Hence, no formal consent is required.

Consent to Participate

The authors give their consent to publish this research article.

Consent for Publication

The authors give their consent to participate in this research article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32488 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravana Kumar, P., Reegan, A.D., Rajakumari, K. et al. Bio-efficacy of Soil Actinomycetes and an Isolated Molecule 1,2-Benzenedicarboxylic Acid from Nonomuraea sp. Against Culex quinquefasciatus Say and Aedes aegypti L. Mosquitoes (Diptera: Culicidae). Appl Biochem Biotechnol 194, 4765–4782 (2022). https://doi.org/10.1007/s12010-021-03766-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03766-8

Keywords

Navigation