Skip to main content
Log in

Study to Explore Plant-Derived Trimethylamine Lyase Enzyme Inhibitors to Address Gut Dysbiosis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lifestyle complications are major health concerns around the globe and are recognized as a major factor for the development of various chronic diseases such as obesity, diabetes, inflammatory bowel diseases, cancer, and cardiac diseases. An unhealthy diet and poor lifestyle impose a serious threat to human health. Numerous studies have suggested the role of human microbiota in human health and diseases. Microbiota resides in the human body symbiotically and the composition of microorganisms is crucial for maintaining the healthy state of an individual. A dysbiotic gut microbiome is responsible for the release of toxic metabolites such as trimethylamine, lipopolysaccharides, bile acids, and uremic toxins and is associated with impaired organ functions. Dietary and herbal intervention of dysbiosis proposes a promising strategy to counteract gut alterations and repairing of the microbial ecosystem and health. The objective of the present comparative study was to observe the effect of therapeutic herbs in gut dysbiosis. In silico studies were performed to identify human microbiota associated with various diseases, ADME, and toxicity properties of phytoconstituents of “Tinospora cordifolia” and “Ocimum sanctum.” Furthermore, co-interaction studies were performed to observe the affinity of selected phytochemicals against choline trimethylamine lyase, a critical enzyme involved in dysbiosis-induced human diseases. The antimicrobial potential of phytocompounds was done by the disc diffusion method. In conclusion, our work discusses the herbal intervention of gut dysbiosis and proposes a natural, safe, and effective herbal formulation to correct microbial dysbiosis and associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be available if required.

Code Availability

No software generated.

References

  1. Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews. Microbiology, 19(1), 55–71

    Article  CAS  Google Scholar 

  2. Gomaa, E. Z. (2020). Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek, 113(12), 2019–2040

    Article  Google Scholar 

  3. Lopetuso, L. R., Petito, V., Graziani, C., Schiavoni, E., Paroni Sterbini, F., Poscia, A., & Gasbarrini, A. (2018). Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: Time for microbial marker of gastrointestinal disorders. Digestive Diseases (Basel, Switzerland), 36(1), 56–65

    Article  Google Scholar 

  4. Rooks, M. G., & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity. Nature Reviews. Immunology, 16(6), 341–352

    Article  CAS  Google Scholar 

  5. Heianza, Y., Sun, D., Li, X., DiDonato, J. A., Bray, G. A., Sacks, F. M., & Qi, L. (2019). Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: The POUNDS Lost trial. Gut, 68(2), 263–270

    Article  CAS  Google Scholar 

  6. Cho, C. E., Taesuwan, S., Malysheva, O. V., Bender, E., Tulchinsky, N. F., Yan, J. … Caudill, M. A. (2017). Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Molecular Nutrition & Food Research, 61(1). https://doi.org/10.1002/mnfr.201600324

  7. Arias, N., Arboleya, S., Allison, J., Kaliszewska, A., Higarza, S. G., Gueimonde, M., & Arias, J. L. (2020). The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients, 12(8), 2340

    Article  CAS  Google Scholar 

  8. Zhu, W., Buffa, J. A., Wang, Z., Warrier, M., Schugar, R., Shih, D. M. … Hazen, S. L. (2018). Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. Journal of Thrombosis and Haemostasis: JTH, 16(9), 1857–1872

  9. Romano, K. A., Vivas, E. I., Amador-Noguez, D., & Rey, F. E. (2015). Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio, 6(2), e02481

  10. Ottiger, M., Nickler, M., Steuer, C., Bernasconi, L., Huber, A., Christ-Crain, M. … Schuetz, P. (2018). Gut, microbiota-dependent trimethylamine-N-oxide is associated with long-term all-cause mortality in patients with exacerbated chronic obstructive pulmonary disease. Nutrition, 45, 135–1411

  11. Tang, W. H., Wang, Z., Kennedy, D. J., Wu, Y., Buffa, J. A., Agatisa-Boyle, B. … Hazen, S. L. (2015). Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circulation Research, 116(3), 448–455

  12. Tan, X., Liu, Y., Long, J., Chen, S., Liao, G., Wu, S., & Zhu, H. (2019). Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease. Molecular Nutrition & Food Research, 63(17), e1900257

    Article  Google Scholar 

  13. Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A. … Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.), 334(6052), 105–108

  14. Saha, S., & Ghosh, S. (2012). Tinospora cordifolia: One plant, many roles. Ancient Science of Life, 31(4), 151–159

    Article  Google Scholar 

  15. Cohen, M. M. (2014). Tulsi - Ocimum sanctum: A herb for all reasons. Journal of Ayurveda and Integrative Medicine, 5(4), 251–259

    Article  Google Scholar 

  16. Sharma, R., Bolleddu, R., Maji, J. K., Ruknuddin, G., & Prajapati, P. K. (2021). In-Vitro α-amylase, α-glucosidase inhibitory activities and in-vivo anti-hyperglycemic potential of different dosage forms of guduchi (Tinospora Cordifolia [Willd.] Miers) prepared with ayurvedic bhavana process. Frontiers in Pharmacology, 12, 642300

    Article  CAS  Google Scholar 

  17. Mondal, S., Varma, S., Bamola, V. D., Naik, S. N., Mirdha, B. R., Padhi, M. M. … Mahapatra, S. C. (2011). Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. Journal of Ethnopharmacology, 136(3), 452–456

  18. Redfern, J., Kinninmonth, M., Burdass, D., & Verran, J. (2014). Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. Journal of Microbiology & Biology Education, 15(1), 45–46

    Article  Google Scholar 

  19. Gupta, M., Thakur, S., Sharma, A., & Gupta, S. (2013). Qualitative and quantitative analysis of phytochemicals and pharmacological value of some dye yielding medicinal plants. Oriental Journal of Chemistry, 29(2), 475–481

    Article  CAS  Google Scholar 

  20. Garg, P., & Garg, R. (2018). Qualitative and quantitative analysis of leaves and stem of tinospora cordifolia in different solvent extract. Journal of Drug Delivery and Therapeutics, 8(5), 259–264

    Article  Google Scholar 

  21. Madhu, M., Sailaja, V., satyadev, T. N. V. S. S., & Satyanarayana, M. V. (2016). Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents. Journal of Pharmacognosy and Phytochemistry, 5(2), 25–29

    CAS  Google Scholar 

  22. Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4), 875–877

    Article  CAS  Google Scholar 

  23. Miean, K. H., & Mohamed, S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry, 49(6), 3106–3112

    Article  CAS  Google Scholar 

  24. Basalekou, M., Kyraleou, M., Pappas, C., Tarantilis, P., Kotseridis, Y., & Kallithraka, S. (2019). Proanthocyanidin content as an astringency estimation tool and maturation index in red and white winemaking technology. Food Chemistry, 299, 125135

    Article  CAS  Google Scholar 

  25. Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2), 361–366

    Article  Google Scholar 

  26. Manandhar, S., Luitel, S., & Dahal, R. K. (2019). In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. Journal of Tropical Medicine, 2019, 1895340

  27. Sakkas, H., & Papadopoulou, C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology, 27(3), 429–438

    Article  CAS  Google Scholar 

  28. Chakraborty, B., Nath, A., Saikia, H., & Sengupta, M. (2014). Bactericidal activity of selected medicinal plants against multidrug resistant bacterial strains from clinical isolates. Asian Pacific Journal of Tropical Medicine, 7S1, S435–S441

    Article  Google Scholar 

  29. Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263

    Article  CAS  Google Scholar 

  30. Valerio, L. G., Jr. (2009). In silico toxicology for the pharmaceutical sciences. Toxicology and Applied Pharmacology, 241(3), 356–370

    Article  CAS  Google Scholar 

  31. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717

    Article  Google Scholar 

  32. Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364

    Article  CAS  Google Scholar 

  33. Yen, S., & Johnson, J. S. (2021). Metagenomics: a path to understanding the gut microbiome. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 32(4), 282–296

    Article  Google Scholar 

  34. Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC bioinformatics, 12, 385

    Article  Google Scholar 

  35. Safran, M., Dalah, I., Alexander, J., Rosen, N., Stein, I., Shmoish, T. … Lancet, D. A., & (2010). GeneCards Version 3: the human gene integrator. Database: The Journal of Biological Databases and Curation, 2010, baq020

  36. Kalnins, G., Kuka, J., Grinberga, S., Makrecka-Kuka, M., Liepinsh, E., Dambrova, M., & Tars, K. (2015). Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. The Journal Biological Chemistry, 290(35), 21732–21740

    Article  CAS  Google Scholar 

  37. Jameson, E., Quareshy, M., & Chen, Y. (2018). Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut. Methods (San Diego, Calif.), 149, 42–48

    Article  CAS  Google Scholar 

  38. Costanzo, L. D., Ghosh, S., Zardecki, C., & Burley, S. K. (2016). Using the tools and resources of the RCSB protein data bank. Current Protocols in Bioinformatics, 55, 1.9.1–1.9.35

  39. Sobolev, O. V., Afonine, P. V., Moriarty, N. W., Hekkelman, M. L., Joosten, R. P., Perrakis, A., & Adams, P. D. (2020). A global ramachandran score identifies protein structures with unlikely stereochemistry. Structure (London, England: 1993), 28(11), 1249–12582

    Article  CAS  Google Scholar 

  40. Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367

    Article  CAS  Google Scholar 

  41. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-aided Drug Design, 7(2), 146–157

    Article  CAS  Google Scholar 

  42. Rath, S., Heidrich, B., Pieper, D. H., & Vital, M. (2017). Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome, 5(1), 54

    Article  Google Scholar 

  43. Steinke, I., Ghanei, N., Govindarajulu, M., Yoo, S., Zhong, J., & Amin, R. H. (2020). Drug discovery and development of novel therapeutics for inhibiting tmao in models of atherosclerosis and diabetes. Frontiers in Physiology, 11, 567899

    Article  Google Scholar 

  44. Ismael, S., Silvestre, M. P., Vasques, M., Araújo, J. R., Morais, J., Duarte, M. I. … Calhau, C. (2021). A pilot study on the metabolic impact of mediterranean diet in type 2 Diabetes: is gut microbiota the key? Nutrients, 13(4), 1228

  45. Liu, J., Lai, L., Lin, J., Zheng, J., Nie, X., Zhu, X. … Liu, T. (2020). Ranitidine and finasteride inhibit the synthesis and release of Trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota. International Journal of Biological Sciences, 16(5), 790–802

  46. Wang, Z., Roberts, A. B., Buffa, J. A., Levison, B. S., Zhu, W., Org, E. … Hazen, S. L. (2015). Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 163(7), 1585–1595

  47. Peterson, C. T., Sharma, V., Uchitel, S., Denniston, K., Chopra, D., Mills, P. J., & Peterson, S. N. (2018). Prebiotic potential of herbal medicines used in digestive health and disease. Journal of Alternative and Complementary Medicine (New York, N.Y.), 24(7), 656–665

    Article  Google Scholar 

  48. Zhang, Y., Gu, Y., Ren, H., Wang, S., Zhong, H., Zhao, X. … Wang, W. (2020). Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nature Communications, 11(1), 5015

  49. Pathak, P., Helsley, R. N., Brown, A. L., Buffa, J. A., Choucair, I., Nemet, I. … Brown, J. M. (2020). Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. American journal of physiology. Heart and Circulatory Physiology, 318(6), H1474–H1486

  50. Pramod, K., Ansari, S. H., & Ali, J. (2010). Eugenol: a natural compound with versatile pharmacological actions. Natural Product Communications, 5(12), 1999–2006

    Article  CAS  Google Scholar 

  51. Prakash, P., & Gupta, N. (2005). Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian Journal of Physiology and Pharmacology, 49(2), 125–131

    CAS  PubMed  Google Scholar 

  52. Singh, D., & Chaudhuri, P. K. (2017). Chemistry and pharmacology of Tinospora cordifolia. Natural Product Communications, 12(2), 299–308

    Article  Google Scholar 

  53. Bondonno, N. P., Bondonno, C. P., Blekkenhorst, L. C., Considine, M. J., Maghzal, G., Stocker, R. … Croft, K. D. (2018). Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Molecular Nutrition & Food Research, 62(3). https://doi.org/10.1002/mnfr.201700674

  54. Shah, S., Akram, M., Riaz, M., Munir, N., & Rasool, G. (2019). Cardioprotective potential of plant-derived molecules: a scientific and medicinal approach. Dose-response: a Publication of International Hormesis Society, 17(2), 1559325819852243

    Article  Google Scholar 

  55. Elisha, I. L., Botha, F. S., McGaw, L. J., & Eloff, J. N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine, 17(1), 133

    Article  Google Scholar 

  56. Dhama, K., Sachan, S., Khandia, R., Munjal, A., Iqbal, H., Latheef, S. K. … Dadar, M. (2017). Medicinal and beneficial health applications of Tinospora cordifolia (Guduchi): a miraculous herb countering various diseases/disorders and its immunomodulatory effects. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 10(2), 96–111

  57. Ntie-Kang, F., Lifongo, L. L., Mbah, J. A., Owono Owono, L. C., Megnassan, E., Mbaze, L. M. … Efange, S. M. (2013). In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacology, 1, 12

  58. Skye, S. M., Zhu, W., Romano, K. A., Guo, C. J., Wang, Z., Jia, X. … Hazen, S. L. (2018). Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circulation Research, 123(10), 1164–1176

  59. D’Argenio, V., Casaburi, G., Precone, V., & Salvatore, F. (2014). Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. BioMed Research International, 2014, 325340

Download references

Acknowledgements

We acknowledge the support of Jaypee Institute of Information Technology for providing the infrastructural support.

Funding

The review was supported by the DST-INSPIRE grant awarded to Ms. Shivani Singhal (DST/INSPIRE Fellowship/2018/IF180896; Mentor: Prof. Vibha Rani).

Author information

Authors and Affiliations

Authors

Contributions

Both the authors carefully read and approved the final manuscript and have equal contribution.

Corresponding authors

Correspondence to Shivani Singhal or Vibha Rani.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, S., Rani, V. Study to Explore Plant-Derived Trimethylamine Lyase Enzyme Inhibitors to Address Gut Dysbiosis. Appl Biochem Biotechnol 194, 99–123 (2022). https://doi.org/10.1007/s12010-021-03747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03747-x

Keywords

Navigation