Abstract
We investigated the combined potency of metformin and cisplatin on the MDA-MB-231, triple-negative breast cancer (TNBC) cells with the application of electrical pulses. There are no targeted therapies for this subset of breast cancer because of the absence of specific biomarkers. Cytotoxic chemotherapy is the mainstream mode of treatment for TNBC, and cisplatin is the most commonly used chemotherapeutic drug. While there is a good response initially, TNBC cells develop drug resistance eventually. Thus, there is a need for alternate therapies. Toward this, we studied the antiproliferation characteristics of electrical pulse-mediated combination therapy using metformin, the commonly used Type-2 diabetes drug, along with cisplatin. We used metformin, as it has various anticancer properties caused by repressing energy pathways in a cancer cell. Application of 8 pulses of 1000 V/cm, 100 µs, at 1 Hz frequency, enhanced the drug uptake leading to cell viability as low as 25.86% at 30 µM cisplatin and 5 mM metformin in a 24 h study. Also, the same studies were conducted on MCF10A, a non-cancerous human epithelial cell. It aided in comparing the result for both MDA-MB-231 and MCF10A cell lines while establishing a better understanding of the experimental outcomes. Overall, the various experimental results from colony-forming assay, reactive oxidative analysis, and the intracellular glucose metabolic assay indicate the possibility of the electrical pulses-based cisplatin and metformin drug combination as a potential alternative to TNBC treatment.










Similar content being viewed by others
Data Availability
Data available on request.
References
Evans, J. M. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R., & Morris, A. D. (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ, 330(7503), 1304–1305. https://doi.org/10.1136/bmj.38415.708634.F7.
Noto, H., Goto, A., Tsujimoto, T., & Noda, M. (2012). Cancer risk in diabetic patients treated with metformin: A systematic review and meta-analysis. PLoS ONE, 7(3), e33411. https://doi.org/10.1371/journal.pone.0033411.
Libby, G., Donnelly, L. A., Donnan, P. T., Alessi, D. R., Morris, A. D., & Evans, J. M. M. (2009). New users of metformin are at low risk of incident cancer. Diabetes Care, 32(9), 1620–1625. https://doi.org/10.2337/dc08-2175.
Mekuria, A. N., Ayele, Y., Tola, A., & Mishore, K. M. (2019). Monotherapy with metformin versus sulfonylureas and risk of cancer in type 2 diabetic patients: A systematic review and meta-analysis. Journal of Diabetes Research, 2019, 7676909. https://doi.org/10.1155/2019/7676909.
Gandini, S., Puntoni, M., Heckman-Stoddard, B. M., Dunn, B. K., Ford, L., DeCensi, A., & Szabo, E. (2014). Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders. Cancer Prevention Research (Philadelphia, Pa.), 7(9), 867–885. https://doi.org/10.1158/1940-6207.CAPR-13-0424.
Decensi, A., Puntoni, M., Goodwin, P., Cazzaniga, M., Gennari, A., Bonanni, B., & Gandini, S. (2010). Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prevention Research (Philadelphia, Pa.), 3(11), 1451–1461. https://doi.org/10.1158/1940-6207.CAPR-10-0157.
Ma, S.-J., Zheng, Y.-X., Zhou, P.-C., Xiao, Y.-N., & Tan, H.-Z. (2016). Metformin use improves survival of diabetic liver cancer patients: Systematic review and meta-analysis. Oncotarget, 7(40), 66202–66211. https://doi.org/10.18632/oncotarget.11033.
Wang, Z., Lai, S.-T., Xie, L., Zhao, J.-D., Ma, N.-Y., Zhu, J., … Jiang, G.-L. (2014). Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 106(1), 19–26. https://doi.org/10.1016/j.diabres.2014.04.007.
Yao, L., Liu, M., Huang, Y., Wu, K., Huang, X., Zhao, Y., … Zhang, R. (2019). Metformin use and lung cancer risk in diabetic patients: A systematic review and meta-analysis. Disease Markers, 2019, 6230162. https://doi.org/10.1155/2019/6230162.
Col, N. F., Ochs, L., Springmann, V., Aragaki, A. K., & Chlebowski, R. T. (2012). Metformin and breast cancer risk: A meta-analysis and critical literature review. Breast Cancer Research and Treatment, 135(3), 639–646. https://doi.org/10.1007/s10549-012-2170-x.
Xu, H., Chen, K., Jia, X., Tian, Y., Dai, Y., Li, D., … Mao, Y. (2015). Metformin use is associated with better survival of breast cancer patients with diabetes: A meta-analysis. The Oncologist, 20(11), 1236–1244. https://doi.org/10.1634/theoncologist.2015-0096.
Hardie, D. G., & Alessi, D. R. (2013). LKB1 and AMPK and the cancer-metabolism link - Ten years after. BMC Biology, 11(1), 36. https://doi.org/10.1186/1741-7007-11-36.
Irvin, W. J., & Carey, L. A. (2008). What is triple-negative breast cancer? European Journal of Cancer, 44(18), 2799–2805. https://doi.org/10.1016/j.ejca.2008.09.034.
Thike, A. A., Cheok, P. Y., Jara-Lazaro, A. R., Tan, B., Tan, P., & Tan, P. H. (2010). Triple-negative breast cancer: Clinicopathological characteristics and relationship with basal-like breast cancer. Modern Pathology, 23(1), 123–133. https://doi.org/10.1038/modpathol.2009.145.
de Ruijter, T. C., Veeck, J., de Hoon, J. P. J., van Engeland, M., & Tjan-Heijnen, V. C. (2011). Characteristics of triple-negative breast cancer. Journal of Cancer Research and Clinical Oncology, 137(2), 183–192. https://doi.org/10.1007/s00432-010-0957-x.
Hu, J., Lieb, J. D., Sancar, A., & Adar, S. (2016). Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proceedings of the National Academy of Sciences, 113(41), 11507–11512.
Basu, A., & Krishnamurthy, S. (2010). Cellular responses to cisplatin-induced DNA damage. Journal of Nucleic Acids, 2010, e201367. https://doi.org/10.4061/2010/201367.
Chen, H. H. W., & Kuo, M. T. (2017). Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 8(37), 62742–62758. https://doi.org/10.18632/oncotarget.18409.
Senkus-Konefka, E., & Jassem, J. (2006). Complications of breast-cancer radiotherapy. Clinical Oncology, 18(3), 229–235. https://doi.org/10.1016/j.clon.2005.11.004.
Quattrini, I., Conti, A., Pazzaglia, L., Novello, C., Ferrari, S., Picci, P., & Benassi, M. S. (2014). Metformin inhibits growth and sensitizes osteosarcoma cell lines to cisplatin through cell cycle modulation. Oncology Reports, 31(1), 370–375. https://doi.org/10.3892/or.2013.2862.
Teixeira, S. F., Guimarães, I. dos S., Madeira, K. P., Daltoé, R. D., Silva, I. V., & Rangel, L. B. A. (2013). Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells. Jornal Brasileiro de Pneumologia, 39, 644–649. https://doi.org/10.1590/S1806-37132013000600002.
Cioce, M., Valerio, M., Casadei, L., Pulito, C., Sacconi, A., Mori, F., … Blandino, G. (2014). Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget, 5(12), 4129–4143.
Hwang, S.-Y., Park, S., & Kwon, Y. (2019). Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacology & Therapeutics, 199, 30–57. https://doi.org/10.1016/j.pharmthera.2019.02.006.
Lin, W.-Y., Cooper, C., Camarillo, I., Reece, L. M., Clah, L., Natarajan, A., … Sundararajan, R. (2014). The Effectiveness of Electroporation- based Nanocurcumin and Curcumin Treatments on Human Breast Cancer Cells, 7.
Mittal, L., Raman, V., Camarillo, I. G., & Sundararajan, R. (2017). Ultra-microsecond pulsed curcumin for effective treatment of triple negative breast cancers. Biochemical and Biophysical Research Communications, 491(4), 1015–1020. https://doi.org/10.1016/j.bbrc.2017.08.002.
Mittal, L., Aryal, U. K., Camarillo, I. G., Ferreira, R. M., & Sundararajan, R. (2019). Quantitative proteomic analysis of enhanced cellular effects of electrochemotherapy with Cisplatin in triple-negative breast cancer cells. Scientific Reports, 9(1), 13916. https://doi.org/10.1038/s41598-019-50048-9.
Mittal, L., Aryal, U. K., Camarillo, I. G., Raman, V., & Sundararajan, R. (2020). Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study. Bioelectrochemistry, 131, 107350. https://doi.org/10.1016/j.bioelechem.2019.107350.
Li, S. (Ed.). (2008). Electroporation Protocols: Preclinical and Clinical Gene Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-194-9.
Qu, Y., Han, B., Yu, Y., Yao, W., Bose, S., Karlan, B. Y., … Cui, X. (2015). Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. PLOS ONE, 10(7), e0131285. https://doi.org/10.1371/journal.pone.0131285.
RealTime-GloTM MT Cell Viability Assay | Live Dead Assay. (n.d.). Retrieved July 7, 2021, from https://www.promega.com/products/cell-health-assays/cell-viability-and-cytotoxicity-assays/realtime_glo-mt-cell-viability-assay/.
Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., & van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. https://doi.org/10.1038/nprot.2006.339.
Rafehi, H., Orlowski, C., Georgiadis, G. T., Ververis, K., El-Osta, A., & Karagiannis, T. C. (2011). Clonogenic Assay: Adherent Cells. Journal of Visualized Experiments : JoVE, 49, 2573. https://doi.org/10.3791/2573.
(2018). Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food and Chemical Toxicology, 118, 154–167. https://doi.org/10.1016/j.fct.2018.05.005.
ROS-GloTM H2O2 Assay. (n.d.). Retrieved July 7, 2021, from https://www.promega.com/products/cell-health-assays/oxidative-stress-assays/ros_glo-h2o2-assay/.
Glucose-GloTM Assay | Glucose Assay Kit | Glucose Detection. (n.d.). Retrieved July 7, 2021, from https://www.promega.com/products/energy-metabolism/metabolite-detection-assays/glucose-glo-assay/.
Pallmann, P., & Hothorn, L. A. (2016). Analysis of means: A generalized approach using R. Journal of Applied Statistics, 43(8), 1541–1560. https://doi.org/10.1080/02664763.2015.1117584.
Lee, S., & Lee, D. K. (2018). What is the proper way to apply the multiple comparison test? Korean Journal of Anesthesiology, 71(5), 353–360. https://doi.org/10.4097/kja.d.18.00242.
McHugh, M. L. (2011). Multiple comparison analysis testing in ANOVA. Biochemia Medica, 21(3), 203–209. https://doi.org/10.11613/BM.2011.029.
Seaman, M. A., Levin, J. R., & Serlin, R. C. (1991). New developments in pairwise multiple comparisons: Some powerful and practicable procedures. Psychological Bulletin, 110(3), 577–586. https://doi.org/10.1037/0033-2909.110.3.577.
Thadewald, T., & Büning, H. (2007). Jarque-Bera test and its competitors for testing normality – A power comparison. Journal of Applied Statistics, 34(1), 87–105. https://doi.org/10.1080/02664760600994539.
Piepho, H.-P. (2004). An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics, 13(2), 456–466. https://doi.org/10.1198/1061860043515.
Piepho, H.-P. (2018). Letters in mean comparisons: What they do and don’t mean. Agronomy Journal, 110(2), 431–434. https://doi.org/10.2134/agronj2017.10.0580.
Braselmann, H., Michna, A., Heß, J., & Unger, K. (2015). CFAssay: Statistical analysis of the colony formation assay. Radiation Oncology, 10(1), 223. https://doi.org/10.1186/s13014-015-0529-y.
Pattarawat, P., Wallace, S., Pfisterer, B., Odoi, A., & Wang, H.-C.R. (2020). Formulation of a triple combination gemcitabine plus romidepsin + cisplatin regimen to efficaciously and safely control triple-negative breast cancer tumor development. Cancer Chemotherapy and Pharmacology, 85(1), 141–152. https://doi.org/10.1007/s00280-019-04013-y.
Wandee, J., Prawan, A., Senggunprai, L., Kongpetch, S., & Kukongviriyapan, V. (2019). Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sciences, 217, 155–163. https://doi.org/10.1016/j.lfs.2018.12.007.
Argilés, J. M., & López-Soriano, F. J. (1990). Why do cancer cells have such a high glycolytic rate? Medical Hypotheses, 32(2), 151–155. https://doi.org/10.1016/0306-9877(90)90039-H.
Zhuang, Y., Chan, D. K., Haugrud, A. B., & Miskimins, W. K. (2014). Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS ONE, 9(9), e108444. https://doi.org/10.1371/journal.pone.0108444.
Griss, T., Vincent, E. E., Egnatchik, R., Chen, J., Ma, E. H., Faubert, B., … Jones, R. G. (2015). Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLOS Biology, 13(12), e1002309. https://doi.org/10.1371/journal.pbio.1002309.
Vallianou, N. G., Evangelopoulos, A., & Kazazis, C. (2013). Metformin and cancer. The Review of Diabetic Studies : RDS, 10(4), 228–235. https://doi.org/10.1900/RDS.2013.10.228.
Acknowledgements
One of the authors (P Sahu) is extremely grateful to the Ross Fellowship and is also thankful to Dr. L. Mittal and Mr. P. Giri for their assistance, guidance in conducting the experiments, analyzing the results, and procuring supplies and samples. All the authors are grateful to the reviewers for their insightful comments.
Author information
Authors and Affiliations
Contributions
Concept and design: R Sundararajan, P Sahu. Experiments: P Sahu, IG Camarillo, R Sundararajan. Data analysis and draft: P Sahu, R Sundararajan, IG Camarillo. Manuscript: all.
Corresponding author
Ethics declarations
Ethical Approval
Not applicable.
Consent for Publication
Yes.
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sahu, P., Camarillo, I.G. & Sundararajan, R. Enhanced Antiproliferation Potency of Electrical Pulse-Mediated Metformin and Cisplatin Combination Therapy on MDA-MB-231 Cells. Appl Biochem Biotechnol 194, 18–36 (2022). https://doi.org/10.1007/s12010-021-03723-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-021-03723-5

