Skip to main content

Advertisement

Log in

Enhanced Antiproliferation Potency of Electrical Pulse-Mediated Metformin and Cisplatin Combination Therapy on MDA-MB-231 Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We investigated the combined potency of metformin and cisplatin on the MDA-MB-231, triple-negative breast cancer (TNBC) cells with the application of electrical pulses. There are no targeted therapies for this subset of breast cancer because of the absence of specific biomarkers. Cytotoxic chemotherapy is the mainstream mode of treatment for TNBC, and cisplatin is the most commonly used chemotherapeutic drug. While there is a good response initially, TNBC cells develop drug resistance eventually. Thus, there is a need for alternate therapies. Toward this, we studied the antiproliferation characteristics of electrical pulse-mediated combination therapy using metformin, the commonly used Type-2 diabetes drug, along with cisplatin. We used metformin, as it has various anticancer properties caused by repressing energy pathways in a cancer cell. Application of 8 pulses of 1000 V/cm, 100 µs, at 1 Hz frequency, enhanced the drug uptake leading to cell viability as low as 25.86% at 30 µM cisplatin and 5 mM metformin in a 24 h study. Also, the same studies were conducted on MCF10A, a non-cancerous human epithelial cell. It aided in comparing the result for both MDA-MB-231 and MCF10A cell lines while establishing a better understanding of the experimental outcomes. Overall, the various experimental results from colony-forming assay, reactive oxidative analysis, and the intracellular glucose metabolic assay indicate the possibility of the electrical pulses-based cisplatin and metformin drug combination as a potential alternative to TNBC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data available on request.

References

  1. Evans, J. M. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R., & Morris, A. D. (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ, 330(7503), 1304–1305. https://doi.org/10.1136/bmj.38415.708634.F7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Noto, H., Goto, A., Tsujimoto, T., & Noda, M. (2012). Cancer risk in diabetic patients treated with metformin: A systematic review and meta-analysis. PLoS ONE, 7(3), e33411. https://doi.org/10.1371/journal.pone.0033411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Libby, G., Donnelly, L. A., Donnan, P. T., Alessi, D. R., Morris, A. D., & Evans, J. M. M. (2009). New users of metformin are at low risk of incident cancer. Diabetes Care, 32(9), 1620–1625. https://doi.org/10.2337/dc08-2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mekuria, A. N., Ayele, Y., Tola, A., & Mishore, K. M. (2019). Monotherapy with metformin versus sulfonylureas and risk of cancer in type 2 diabetic patients: A systematic review and meta-analysis. Journal of Diabetes Research, 2019, 7676909. https://doi.org/10.1155/2019/7676909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gandini, S., Puntoni, M., Heckman-Stoddard, B. M., Dunn, B. K., Ford, L., DeCensi, A., & Szabo, E. (2014). Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders. Cancer Prevention Research (Philadelphia, Pa.), 7(9), 867–885. https://doi.org/10.1158/1940-6207.CAPR-13-0424.

    Article  CAS  Google Scholar 

  6. Decensi, A., Puntoni, M., Goodwin, P., Cazzaniga, M., Gennari, A., Bonanni, B., & Gandini, S. (2010). Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prevention Research (Philadelphia, Pa.), 3(11), 1451–1461. https://doi.org/10.1158/1940-6207.CAPR-10-0157.

    Article  CAS  Google Scholar 

  7. Ma, S.-J., Zheng, Y.-X., Zhou, P.-C., Xiao, Y.-N., & Tan, H.-Z. (2016). Metformin use improves survival of diabetic liver cancer patients: Systematic review and meta-analysis. Oncotarget, 7(40), 66202–66211. https://doi.org/10.18632/oncotarget.11033.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang, Z., Lai, S.-T., Xie, L., Zhao, J.-D., Ma, N.-Y., Zhu, J., … Jiang, G.-L. (2014). Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 106(1), 19–26. https://doi.org/10.1016/j.diabres.2014.04.007.

  9. Yao, L., Liu, M., Huang, Y., Wu, K., Huang, X., Zhao, Y., … Zhang, R. (2019). Metformin use and lung cancer risk in diabetic patients: A systematic review and meta-analysis. Disease Markers, 2019, 6230162. https://doi.org/10.1155/2019/6230162.

  10. Col, N. F., Ochs, L., Springmann, V., Aragaki, A. K., & Chlebowski, R. T. (2012). Metformin and breast cancer risk: A meta-analysis and critical literature review. Breast Cancer Research and Treatment, 135(3), 639–646. https://doi.org/10.1007/s10549-012-2170-x.

    Article  CAS  PubMed  Google Scholar 

  11. Xu, H., Chen, K., Jia, X., Tian, Y., Dai, Y., Li, D., … Mao, Y. (2015). Metformin use is associated with better survival of breast cancer patients with diabetes: A meta-analysis. The Oncologist, 20(11), 1236–1244. https://doi.org/10.1634/theoncologist.2015-0096.

  12. Hardie, D. G., & Alessi, D. R. (2013). LKB1 and AMPK and the cancer-metabolism link - Ten years after. BMC Biology, 11(1), 36. https://doi.org/10.1186/1741-7007-11-36.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Irvin, W. J., & Carey, L. A. (2008). What is triple-negative breast cancer? European Journal of Cancer, 44(18), 2799–2805. https://doi.org/10.1016/j.ejca.2008.09.034.

    Article  CAS  PubMed  Google Scholar 

  14. Thike, A. A., Cheok, P. Y., Jara-Lazaro, A. R., Tan, B., Tan, P., & Tan, P. H. (2010). Triple-negative breast cancer: Clinicopathological characteristics and relationship with basal-like breast cancer. Modern Pathology, 23(1), 123–133. https://doi.org/10.1038/modpathol.2009.145.

    Article  CAS  PubMed  Google Scholar 

  15. de Ruijter, T. C., Veeck, J., de Hoon, J. P. J., van Engeland, M., & Tjan-Heijnen, V. C. (2011). Characteristics of triple-negative breast cancer. Journal of Cancer Research and Clinical Oncology, 137(2), 183–192. https://doi.org/10.1007/s00432-010-0957-x.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, J., Lieb, J. D., Sancar, A., & Adar, S. (2016). Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proceedings of the National Academy of Sciences, 113(41), 11507–11512.

    Article  CAS  Google Scholar 

  17. Basu, A., & Krishnamurthy, S. (2010). Cellular responses to cisplatin-induced DNA damage. Journal of Nucleic Acids, 2010, e201367. https://doi.org/10.4061/2010/201367.

    Article  CAS  Google Scholar 

  18. Chen, H. H. W., & Kuo, M. T. (2017). Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 8(37), 62742–62758. https://doi.org/10.18632/oncotarget.18409.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Senkus-Konefka, E., & Jassem, J. (2006). Complications of breast-cancer radiotherapy. Clinical Oncology, 18(3), 229–235. https://doi.org/10.1016/j.clon.2005.11.004.

    Article  CAS  PubMed  Google Scholar 

  20. Quattrini, I., Conti, A., Pazzaglia, L., Novello, C., Ferrari, S., Picci, P., & Benassi, M. S. (2014). Metformin inhibits growth and sensitizes osteosarcoma cell lines to cisplatin through cell cycle modulation. Oncology Reports, 31(1), 370–375. https://doi.org/10.3892/or.2013.2862.

    Article  CAS  PubMed  Google Scholar 

  21. Teixeira, S. F., Guimarães, I. dos S., Madeira, K. P., Daltoé, R. D., Silva, I. V., & Rangel, L. B. A. (2013). Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells. Jornal Brasileiro de Pneumologia, 39, 644–649. https://doi.org/10.1590/S1806-37132013000600002.

  22. Cioce, M., Valerio, M., Casadei, L., Pulito, C., Sacconi, A., Mori, F., … Blandino, G. (2014). Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget, 5(12), 4129–4143.

  23. Hwang, S.-Y., Park, S., & Kwon, Y. (2019). Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacology & Therapeutics, 199, 30–57. https://doi.org/10.1016/j.pharmthera.2019.02.006.

    Article  CAS  Google Scholar 

  24. Lin, W.-Y., Cooper, C., Camarillo, I., Reece, L. M., Clah, L., Natarajan, A., … Sundararajan, R. (2014). The Effectiveness of Electroporation- based Nanocurcumin and Curcumin Treatments on Human Breast Cancer Cells, 7.

  25. Mittal, L., Raman, V., Camarillo, I. G., & Sundararajan, R. (2017). Ultra-microsecond pulsed curcumin for effective treatment of triple negative breast cancers. Biochemical and Biophysical Research Communications, 491(4), 1015–1020. https://doi.org/10.1016/j.bbrc.2017.08.002.

    Article  CAS  PubMed  Google Scholar 

  26. Mittal, L., Aryal, U. K., Camarillo, I. G., Ferreira, R. M., & Sundararajan, R. (2019). Quantitative proteomic analysis of enhanced cellular effects of electrochemotherapy with Cisplatin in triple-negative breast cancer cells. Scientific Reports, 9(1), 13916. https://doi.org/10.1038/s41598-019-50048-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mittal, L., Aryal, U. K., Camarillo, I. G., Raman, V., & Sundararajan, R. (2020). Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study. Bioelectrochemistry, 131, 107350. https://doi.org/10.1016/j.bioelechem.2019.107350.

    Article  CAS  PubMed  Google Scholar 

  28. Li, S. (Ed.). (2008). Electroporation Protocols: Preclinical and Clinical Gene Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-194-9.

  29. Qu, Y., Han, B., Yu, Y., Yao, W., Bose, S., Karlan, B. Y., … Cui, X. (2015). Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. PLOS ONE, 10(7), e0131285. https://doi.org/10.1371/journal.pone.0131285.

  30. RealTime-GloTM MT Cell Viability Assay | Live Dead Assay. (n.d.). Retrieved July 7, 2021, from https://www.promega.com/products/cell-health-assays/cell-viability-and-cytotoxicity-assays/realtime_glo-mt-cell-viability-assay/.

  31. Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., & van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. https://doi.org/10.1038/nprot.2006.339.

    Article  CAS  PubMed  Google Scholar 

  32. Rafehi, H., Orlowski, C., Georgiadis, G. T., Ververis, K., El-Osta, A., & Karagiannis, T. C. (2011). Clonogenic Assay: Adherent Cells. Journal of Visualized Experiments : JoVE, 49, 2573. https://doi.org/10.3791/2573.

    Article  Google Scholar 

  33. (2018). Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food and Chemical Toxicology, 118, 154–167. https://doi.org/10.1016/j.fct.2018.05.005.

  34. ROS-GloTM H2O2 Assay. (n.d.). Retrieved July 7, 2021, from https://www.promega.com/products/cell-health-assays/oxidative-stress-assays/ros_glo-h2o2-assay/.

  35. Glucose-GloTM Assay | Glucose Assay Kit | Glucose Detection. (n.d.). Retrieved July 7, 2021, from https://www.promega.com/products/energy-metabolism/metabolite-detection-assays/glucose-glo-assay/.

  36. Pallmann, P., & Hothorn, L. A. (2016). Analysis of means: A generalized approach using R. Journal of Applied Statistics, 43(8), 1541–1560. https://doi.org/10.1080/02664763.2015.1117584.

    Article  Google Scholar 

  37. Lee, S., & Lee, D. K. (2018). What is the proper way to apply the multiple comparison test? Korean Journal of Anesthesiology, 71(5), 353–360. https://doi.org/10.4097/kja.d.18.00242.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McHugh, M. L. (2011). Multiple comparison analysis testing in ANOVA. Biochemia Medica, 21(3), 203–209. https://doi.org/10.11613/BM.2011.029.

    Article  CAS  PubMed  Google Scholar 

  39. Seaman, M. A., Levin, J. R., & Serlin, R. C. (1991). New developments in pairwise multiple comparisons: Some powerful and practicable procedures. Psychological Bulletin, 110(3), 577–586. https://doi.org/10.1037/0033-2909.110.3.577.

    Article  Google Scholar 

  40. Thadewald, T., & Büning, H. (2007). Jarque-Bera test and its competitors for testing normality – A power comparison. Journal of Applied Statistics, 34(1), 87–105. https://doi.org/10.1080/02664760600994539.

    Article  Google Scholar 

  41. Piepho, H.-P. (2004). An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics, 13(2), 456–466. https://doi.org/10.1198/1061860043515.

    Article  Google Scholar 

  42. Piepho, H.-P. (2018). Letters in mean comparisons: What they do and don’t mean. Agronomy Journal, 110(2), 431–434. https://doi.org/10.2134/agronj2017.10.0580.

    Article  Google Scholar 

  43. Braselmann, H., Michna, A., Heß, J., & Unger, K. (2015). CFAssay: Statistical analysis of the colony formation assay. Radiation Oncology, 10(1), 223. https://doi.org/10.1186/s13014-015-0529-y.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pattarawat, P., Wallace, S., Pfisterer, B., Odoi, A., & Wang, H.-C.R. (2020). Formulation of a triple combination gemcitabine plus romidepsin + cisplatin regimen to efficaciously and safely control triple-negative breast cancer tumor development. Cancer Chemotherapy and Pharmacology, 85(1), 141–152. https://doi.org/10.1007/s00280-019-04013-y.

    Article  CAS  PubMed  Google Scholar 

  45. Wandee, J., Prawan, A., Senggunprai, L., Kongpetch, S., & Kukongviriyapan, V. (2019). Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sciences, 217, 155–163. https://doi.org/10.1016/j.lfs.2018.12.007.

    Article  CAS  PubMed  Google Scholar 

  46. Argilés, J. M., & López-Soriano, F. J. (1990). Why do cancer cells have such a high glycolytic rate? Medical Hypotheses, 32(2), 151–155. https://doi.org/10.1016/0306-9877(90)90039-H.

    Article  PubMed  Google Scholar 

  47. Zhuang, Y., Chan, D. K., Haugrud, A. B., & Miskimins, W. K. (2014). Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS ONE, 9(9), e108444. https://doi.org/10.1371/journal.pone.0108444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Griss, T., Vincent, E. E., Egnatchik, R., Chen, J., Ma, E. H., Faubert, B., … Jones, R. G. (2015). Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLOS Biology, 13(12), e1002309. https://doi.org/10.1371/journal.pbio.1002309.

  49. Vallianou, N. G., Evangelopoulos, A., & Kazazis, C. (2013). Metformin and cancer. The Review of Diabetic Studies : RDS, 10(4), 228–235. https://doi.org/10.1900/RDS.2013.10.228.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors (P Sahu) is extremely grateful to the Ross Fellowship and is also thankful to Dr. L. Mittal and Mr. P. Giri for their assistance, guidance in conducting the experiments, analyzing the results, and procuring supplies and samples. All the authors are grateful to the reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: R Sundararajan, P Sahu. Experiments: P Sahu, IG Camarillo, R Sundararajan. Data analysis and draft: P Sahu, R Sundararajan, IG Camarillo. Manuscript: all.

Corresponding author

Correspondence to Raji Sundararajan.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Publication

Yes.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Camarillo, I.G. & Sundararajan, R. Enhanced Antiproliferation Potency of Electrical Pulse-Mediated Metformin and Cisplatin Combination Therapy on MDA-MB-231 Cells. Appl Biochem Biotechnol 194, 18–36 (2022). https://doi.org/10.1007/s12010-021-03723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03723-5

Keywords

Profiles

  1. Praveen Sahu