Skip to main content
Log in

Assessment of Rheological Behaviour of Water-in-Oil Emulsions Mediated by Glycolipid Biosurfactant Produced by Bacillus megaterium SPSW1001

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A screening programme using mineral salt medium supplemented with n-hexadecane resulted in isolating a Bacillus megaterium SPSW1001 which was capable of producing surface active molecules lowering culture medium surface tension to 27.43 ± 0.029 mN/m and interfacial tension to 0.38 ± 0.03 mN/m at 72 h and an emulsification index (E24) (85.63%). The biosurfactant product was further used to assess its effects on the rheological characteristics of water-in-oil emulsion prepared with engine oil. Structural characterization of the biosurfactant product by FTIR revealed a C–O–C stretch in sugar moiety and ester carbonyl linkage group between sugar and fatty acids, respectively, while mass spectral analysis revealed its glycolipid nature, with an m/z value of 662.44. The fluid behaviour of water-in-oil emulsion showed a non-Newtonian viscoelastic dilatant flow after yielding exemplified appropriately by Herschel-Bulkley model with 100% confidence of fit. The present study is significant in formulation and handling, processing, and transport of emulsion and in understanding flocculation characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Ceresa, C., Fracchia, L., Fedeli, E., Porta, C., & Banat, I. M. (2021). Recent advances in biomedical, therapeutic and pharmaceutical applications of microbial surfactants. Pharmaceutics, 13(4), 466. https://doi.org/10.3390/pharmaceutics13040466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farias, C. B. B., Almeida, F. C., Silva, I. A., Souza, T. C., Meira, H. M., Rita de Cássia, F., Lunaa, J. M., Santos, V. A., Converti, A., Banat, I. M., & Sarubbo, L. A. (2021). Production of green surfactants: Market prospects. Electronic Journal of Biotechnology. https://doi.org/10.1016/j.ejbt.2021.02.002

    Article  Google Scholar 

  3. Geetha, S. J., Banat, I. M., & Joshi, S. J. (2018). Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis and Agricultural Biotechnology, 14, 23–32. https://doi.org/10.1016/j.bcab.2018.01.010

    Article  Google Scholar 

  4. Lima, Á. S., & Alegre, R. M. (2009). Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913. Brazilian Archives of Biology and Technology, 52(2), 285–290. https://doi.org/10.1590/S1516-89132009000200004

    Article  CAS  Google Scholar 

  5. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53(5), 495–508. https://doi.org/10.1007/s002530051648

    Article  CAS  PubMed  Google Scholar 

  6. Naughton, P. J., Marchant, R., Naughton, V., & Banat, I. M. (2019). Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries. Journal of Applied Microbiology, 127(1), 12–28. https://doi.org/10.1111/jam.14243

    Article  CAS  PubMed  Google Scholar 

  7. Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T. J., & Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87(2), 427–444. https://doi.org/10.1007/s00253-010-2589-0

    Article  CAS  PubMed  Google Scholar 

  8. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64. https://doi.org/10.1128/.61.1.47-64.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nitschke, M., & Pastore, G. M. (2004). Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Applied Biochemistry and Biotechnology, 112(3), 163–172. https://doi.org/10.1385/ABAB:112:3:163

    Article  CAS  PubMed  Google Scholar 

  10. Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56(3), 339–347. https://doi.org/10.1016/j.mimet.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  11. Schmid, A., Kollmer, A., & Witholt, B. (1998). Effects of biosurfactant and emulsification on two-liquid phase Pseudomonas oleovorans cultures and cell-free emulsions containing n-Decane. Enzyme and Microbial Technology, 22(6), 487–493. https://doi.org/10.1016/S0141-0229(97)00238-X

    Article  CAS  Google Scholar 

  12. Kumar, A. S., & Mody, K. (2009). Microbial exopolysaccharides: Variety and potential applications. Microbial production of Biopolymers and Polymer Precursors: Applications and Perspectives, 229–253.

  13. Appaiah, K. A., & Karanth, N. G. K. (1991). Insecticide specific emulsifier production by hexachlorocyclohexane utilizing Pseudomonas tralucida Ptm+ strain. Biotechnology Letters, 13(5), 371–374. https://doi.org/10.1007/BF01027685

    Article  CAS  Google Scholar 

  14. Iyer, A., Mody, K., & Jha, B. (2006). Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme and Microbial Technology, 38(1–2), 220–222. https://doi.org/10.1016/j.enzmictec.2005.06.007

    Article  CAS  Google Scholar 

  15. Gutierrez, T., Shimmield, T., Haidon, C., Black, K., & Green, D. H. (2008). Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. strain TG12. Applied and Environmental Microbiology74(15), 4867–4876. https://doi.org/10.1128/AEM.00316-08

  16. Pal, R., & Rhodes, E. (1989). Viscosity/concentration relationships for emulsions. Journal of Rheology, 33(7), 1021–1045. https://doi.org/10.1122/1.550044

    Article  CAS  Google Scholar 

  17. Banat, I. M., Carboué, Q., Saucedo-Castañeda, G., & de Jesús Cázares-Marinero, J. (2021). Biosurfactants: The green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology. Bioresource Technology, 124222. https://doi.org/10.1016/j.biortech.2020.124222

  18. Marchant, R., & Banat, I. M. (2012). Biosurfactants: A sustainable replacement for chemical surfactants? Biotechnology Letters, 34(9), 1597–1605. https://doi.org/10.1007/s10529-012-0956-x

    Article  CAS  PubMed  Google Scholar 

  19. Marchant, R., & Banat, I. M. (2012). Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends in Biotechnology, 30(11), 558–565. https://doi.org/10.1016/j.tibtech.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Perfumo, A., Banat, I. M., & Marchant, R. (2018). Going green and cold: Biosurfactants from low-temperature environments to biotechnology applications. Trends in Biotechnology, 36(3), 277–289. https://doi.org/10.1016/j.tibtech.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  21. Singh, V., Saha, S., & Padmanabhan, P. (2020). Assessment of the wettability of hydrophobic solid substrate by biosurfactant produced by Bacillus aryabhattai SPS1001. Current Microbiology, 1-8. https://doi.org/10.1007/s00284-020-01985-6

  22. Fernandes, P. A. V., Arruda, I. R. D., Santos, A. F. A. B. D., Araújo, A. A. D., Maior, A. M. S., & Ximenes, E. A. (2007). Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Brazilian Journal of Microbiology, 38(4), 704–709. https://doi.org/10.1590/S1517-83822007000400022

    Article  Google Scholar 

  23. Panjiar, N., Sachan, S. G., & Sachan, A. (2015). Screening of bioemulsifier-producing micro-organisms isolated from oil-contaminated sites. Annals of Microbiology, 65(2), 753–764. https://doi.org/10.1007/s13213-014-0915-y

    Article  CAS  Google Scholar 

  24. Bosch, M. P., Robert, M., Mercade, M. E., Espuny, M. J., & Parra, J. L. (1988). Surface active compounds on microbial cultures: Investigation and production of surface active compounds on microbial cultures. Tenside Detergents, 25(4), 208–211.

    Article  Google Scholar 

  25. Yakimov, M. M., Timmis, K. N., Wray, V., & Fredrickson, H. L. (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Applied and Environmental Microbiology, 61(5), 1706–1713. https://doi.org/10.1128/aem.61.5.1706-1713.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sambrook, H. C. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY. https://doi.org/10.1016/0307-4412(83)90068-7

    Article  Google Scholar 

  27. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33(7), 1870–1874. https://doi.org/10.1093/molbe v/msw054

  28. Sharma, D., Saharan, B. S., Chauhan, N., Bansal, A., & Procha, S. (2014). Production and structural characterization of Lactobacillus helveticus derived biosurfactant. The Scientific World Journal2014. https://doi.org/10.1155/2014/493548

  29. Allen, D. A., Austin, B., & Colwell, R. R. (1983). Numerical taxonomy of bacterial isolates associated with a freshwater fishery. Microbiology, 129(7), 2043–2062. https://doi.org/10.1099/00221287-129-7-2043

    Article  Google Scholar 

  30. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  Google Scholar 

  31. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  Google Scholar 

  32. Freitas, F., Alves, V. D., Carvalheira, M., Costa, N., Oliveira, R., & Reis, M. A. (2009). Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydrate Polymers, 78(3), 549–556. https://doi.org/10.1016/j.carbpol.2009.05.016

    Article  CAS  Google Scholar 

  33. Willumsen, P. A., & Karlson, U. (1996). Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation, 7(5), 415–423. https://doi.org/10.1007/BF00056425

    Article  CAS  Google Scholar 

  34. Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53(2), 224–229. https://doi.org/10.1128/AEM.53.2.224-229.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martínez-Checa, F., Toledo, F., Vilchez, R., Quesada, E., & Calvo, C. (2002). Yield production, chemical composition, and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Applied Microbiology and Biotechnology, 58(3), 358–363. https://doi.org/10.1007/s00253-001-0903-6

    Article  CAS  PubMed  Google Scholar 

  36. Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology, 45(6), 686–691. https://doi.org/10.1111/j.1472-765X.2007.02256.x

    Article  CAS  PubMed  Google Scholar 

  37. Sobrinho, H. B., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F., & Sarubbo, L. A. (2008). Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochemistry, 43(9), 912–917. https://doi.org/10.1016/j.procbio.2008.04.013

    Article  CAS  Google Scholar 

  38. Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., & Nabi, A. (2008). Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 223(1–3), 143–151. https://doi.org/10.1016/j.desal.2007.01.198

    Article  CAS  Google Scholar 

  39. Goodarzi, F., & Zendehboudi, S. (2019). Effects of salt and surfactant on interfacial characteristics of water/oil systems: Molecular dynamic simulations and dissipative particle dynamics. Industrial & Engineering Chemistry Research, 58(20), 8817–8834. https://doi.org/10.1021/acs.iecr.9b00504

    Article  CAS  Google Scholar 

  40. Thavasi, R., Nambaru, V. S., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2009). Biosurfactant production by Azotobacter chroococcum isolated from the marine environment. Marine Biotechnology, 11(5), 551. https://doi.org/10.1007/s10126-008-9162-1

    Article  CAS  PubMed  Google Scholar 

  41. Pornsunthorntawee, O., Wongpanit, P., Chavadej, S., Abe, M., & Rujiravanit, R. (2008). Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource technology, 99(6), 1589–1595. https://doi.org/10.1016/j.biortech.2007.04.020

    Article  CAS  PubMed  Google Scholar 

  42. Stanghellini, M. E., & Miller, R. M. (1997). Biosurfactants: Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant disease, 81(1), 4–12. https://doi.org/10.1094/PDIS.1997.81.1.4

    Article  CAS  PubMed  Google Scholar 

  43. Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2008). Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World Journal of Microbiology and Biotechnology, 24(7), 917–925. https://doi.org/10.1007/s11274-007-9609-y

    Article  CAS  Google Scholar 

  44. Abdel-Mawgoud, A. M., Lépine, F., & Déziel, E. (2010). Rhamnolipids: Diversity of structures, microbial origins and roles. Applied microbiology and biotechnology, 86(5), 1323–1336. https://doi.org/10.1007/s00253-010-2498-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Binks, B. P., Clint, J. H., & Whitby, C. P. (2005). Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles. Langmuir, 21(12), 5307–5316. https://doi.org/10.1021/la050255w

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Central Instrumentation Facility and Department of Bio-engineering at Birla Institute of Technology, Mesra, Ranchi, and Jharkhand, India, for providing research facilities. We gratefully acknowledge DST and SAIF/CRNTS, IIT Bombay for providing (LCMS/QTOF/Orbitrap) analytical facility for my research work. Also, I would like to thank Mr. V. K. Srivastava for giving permission for a sample collection from Haldia Oil Refinery, Haldia.

Funding

We gratefully acknowledge the Government of India (Department of Science & Technology) Scheme for Women Scientist-A (WOS-A) for a research grant (Project no. SR/WOS-A/LS-154/2018) to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

Varsha Singh: designed the study, performed the experiments, analysed the results, and wrote and revised the manuscript.

Zairah Waris: performed the experiments and analysed the results, and wrote and revised the manuscript.

Ibrahim M. Banat: analysed the results and revised the manuscript.

Padmini Padmanabhan: design the study and revised the manuscript.

Sriparna Saha: revised the manuscript and participated in the study. Manuscript was read and approved by all authors.

Corresponding author

Correspondence to Padmini Padmanabhan.

Ethics declarations

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Waris, Z., Banat, I.M. et al. Assessment of Rheological Behaviour of Water-in-Oil Emulsions Mediated by Glycolipid Biosurfactant Produced by Bacillus megaterium SPSW1001. Appl Biochem Biotechnol 194, 1310–1326 (2022). https://doi.org/10.1007/s12010-021-03717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03717-3

Keywords

Navigation