Skip to main content

Advertisement

Log in

Targeting Microbial Bio-film: an Update on MDR Gram-Negative Bio-film Producers Causing Catheter-Associated Urinary Tract Infections

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In every age group, urinary tract infection (UTI) is found as a major recurrence infectious disorder. Bio-films produced by bacteria perform a vital role in causing infection in the tract of the urinary system, leading to recurrences and relapses. The purpose of this review is to present the role and mechanism of bio-film producing MDR Gram-negative bacteria causing UTI, their significance, additionally the challenges for remedy and prevention of catheter-associated UTI. This work appreciates a new understanding of bio-film producers which are having multi-drug resistance capability and focuses on the effect and control of bio-film producing uropathogenic bacteria related to catheterization. We have tried to analyze approaches to target bio-film and reported phytochemicals with anti-bio-film activity also updated on anti-bio-film therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mishra, M. P., Rath, S., Rath, S., Swain, S. S., Ghosh, G., Das, D., & Padhy, R. N. (2017). In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria. Journal of King Sound University, 29(1), 84–95. https://doi.org/10.1016/j.jksus.2015.05.007

    Article  Google Scholar 

  2. Flores-Mireles, A., Walker, J., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews. Microbiology, 13, 269–284. https://doi.org/10.1038/nrmicro3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hooton, T. M. (2012). Uncomplicated urinary tract infection. New England Journal of Medicine, 366, 1028–1037. https://doi.org/10.1056/NEJMcp1104429

    Article  CAS  PubMed  Google Scholar 

  4. Nielubowicz, G. R., & Mobley, H. L. (2010). Host–pathogen interactions in urinary tract infection. Nature Reviews. Urology, 7, 430–441. https://doi.org/10.1038/nrurol.2010.101

    Article  CAS  PubMed  Google Scholar 

  5. Muhammad, I. A., & Ghareb, D. J. (2019). Bio-film forming capability, multidrug resistance and detection of associated genes in uropathogenicEscherichia coli isolated from catheterized patients. ZANCO Journal of Pure and Applied Sciences, 31(4), 9–22. https://doi.org/10.21271/zjpas.31.4.2

    Article  Google Scholar 

  6. Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus Bio-film: an emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control, 8(76), 1–10. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  7. Dash, D., Sarangi, G., Patro, P., & Chayani, N. (2018). Study of bio-film production in Escherichia coli causing urinary tract infection and its correlation with antimicrobial resistance. Journal of the Academy of Clinical Microbiologists, 20(2), 88–91. https://doi.org/10.4103/jacm.jacm_35_17

    Article  Google Scholar 

  8. Majumder, M. M. I., Ahmed, T., Ahmed, S., & Khan, A. R. (2018). Microbiology of catheter associated urinary tract infection. Intech Open, 80080, 23–43. https://doi.org/10.5772/intechopen.80080

    Article  Google Scholar 

  9. Menegueti, M. G., Ciol, M. A., Bellissimo-Rodrigues, F., Auxiliadora-Martins, M., Gaspar, G. G., Canini, S. R. M. D. S., Basile-Filho, A., & &Laus A. M. (2019). Long-term prevention of catheter-associated urinary tract infections among critically ill patients through the implementation of an educational program and a daily checklist for maintenance of indwelling urinary catheters: A quasi-experimental study. Medicine, 98(8), 1–5. https://doi.org/10.1097/MD.0000000000014417

    Article  Google Scholar 

  10. Vargas-Cruz, N., Rosenblatt, J., Reitzel, R. A., Chaftari, A. M., Hachem, R., & Raad, I. (2019). Pilot ex vivo and in vitro evaluation of a novel foley catheter with antimicrobial periurethral irrigation for prevention of extraluminal bio-film colonization leading to catheter-associated urinary tract infections (CAUTIs). BioMed Research International, 20192869039, 1–10. https://doi.org/10.1155/2019/2869039

    Article  CAS  Google Scholar 

  11. Chakrabarty, S., Choudhury, S., & Mishra, M. P. (2020). Prevalence of Gram-negative non-lactose fermenters causing urinary tract infections in a tertiary care hospital, Eastern India. Shodh Sarita, 28, 2348–2397.

    Google Scholar 

  12. Guggenbichler, P. J., Assadian, O., Boeswald, M., & Kramer, A. (2011). Incidence and clinical implication of nosocomial infections associated with implantable biomaterials - catheters, ventilator associated pneumonia, and urinary tract infections. GMS Krankenhaushygiene Interdisziplinä, 6(1), 1–19. https://doi.org/10.3205/dgkh000175

    Article  Google Scholar 

  13. Khalek, S. A., Ramadan, M. O., & Radwan, M. H. (2020). Phenotypic and genotypic detection of efflux pump mediated meropenem resistance in Pseudomonas aeruginosa isolates from catheter associated urinary tract infection. Egyptian Journal of Medical Microbiology, 29, 2537–0979.

    Google Scholar 

  14. Acker, H. V., Dijck, P. V., & Coenye, T. (2014). Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal bio-films. Trends in Microbiology, 22(6), 326–333. https://doi.org/10.1016/j.tim.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  15. Delcaru, C., Alexandru, I., Podgoreanu, P., Grosu, M., Stavropoulos, E., & Chifiriuc, M. C. (2016). Microbial bio-films in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens, 5(4), 65, 1-12. https://doi.org/10.3390/pathogens5040065

    Article  CAS  PubMed Central  Google Scholar 

  16. Tasneem, U., Yasin, N., Nisa, I., Shah, F., Rasheed, U., Momin, F., Zaman, S., & Qasim, M. (2018). Bio-film producing bacteria: a serious threat to public health in developing countries. Journal of Food Science and Nutrition, 1(2), 25–31. https://doi.org/10.35841/food-science.1.2.25-31

    Article  Google Scholar 

  17. Nazmeen, A., & Maiti, S. (2018). Prevalence, types and antibiotic sensitivity pattern in urinary tract infection (UTI) In Midnapore Town, India. Journal of Clinical and Molecular Pathology, 2, 1–16.

    Google Scholar 

  18. Soto, S. M. (2014). Importance of bio-films in urinary tract infections: new therapeutic approaches. Advances in Biology, 5, 1–13. https://doi.org/10.1155/2014/543974

    Article  CAS  Google Scholar 

  19. Allam, N. G. (2017). Correlation between bio-film production and bacterial urinary tract infections: new therapeutic approach. Egyptian Journal of Microbiology, 52(1), 39–48. https://doi.org/10.21608/EJM.2017.1014.1021

    Article  Google Scholar 

  20. McCarty, S., Woods, E., & Percival, S. L. (2014). Bio-films: from concept to Reality. Elsevier Inc, 143–163. https://doi.org/10.1016/B978-0-12-397043-5.00009-8

  21. Ha, U. S., & Cho, Y. H. (2006). Catheter-associated urinary tract infections: new aspects of novel urinary catheters. International Journal of Antimicrobial Agents, 28(6), 485–490. https://doi.org/10.1016/j.ijantimicag.2006.08.020

    Article  CAS  PubMed  Google Scholar 

  22. Verderosa, A. D., Totsika, M., & Fairfull-Smith, K. E. (2019). Bacterial bio-film eradication agents: a current review. Medicinal and pharmaceutical chemistry, 7(824), 1–17. https://doi.org/10.3389/fchem.2019.00824

    Article  CAS  Google Scholar 

  23. Ponnusamy, P., Natarajan, V., & Sevanan, M. (2012). In vitro Bio-film formation by uropathogenic Escherichia coli and their antimicrobial susceptibility pattern. Asian Pacific Journal of Tropical Medicine, 5(3), 210–213. https://doi.org/10.1016/S1995-7645(12)60026-1

    Article  CAS  PubMed  Google Scholar 

  24. Mann, E. E., & Wozniak, D. J. (2012). Pseudomonas bio-film matrix composition and niche biology. FEMS Microbiology Reviews, 36(4), 893–916. https://doi.org/10.1111/j.1574-6976.2011.00322.x

    Article  CAS  PubMed  Google Scholar 

  25. Fuente-Núñez, D. L., Reffuveille, C., Fairfull-Smith, K. E., & Hancock, R. E. W. (2013). Effect of nitroxides on swarming motility and bio-film formation, multicellular behaviors in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 57, 4877–4881. https://doi.org/10.1128/AAC.01381-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan, A., Farraj, D. A. A., Syeda, M. F., Muhammad, A. Y., Mohamed, S. E., Alkufeidy, R. M., Mustafa, A. Z. M. A., Bhasme, P., Alshammari, M. K., Alkubaisi, N. A., Abbasi, A. M., & Naqvi, T. A. (2020). Anti-bio-film activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. Journal of Infection and Public Health, 13(11), 1734–1741. https://doi.org/10.1016/j.jiph.2020.07.007

    Article  Google Scholar 

  27. Cruz-Muniz, M. Y., Lopez-Jacome, L. E., Hernandez-Duran, M., FrancoCendejas, R., Licona-Limon, P., & Ramos-Balderas, J. L. (2017). Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections. International Journal of Antimicrobial Agents, 49, 88–92. https://doi.org/10.1016/j.ijantimicag.2016.08.022

    Article  CAS  PubMed  Google Scholar 

  28. Rabin, N., Zheng, Y., Opoku-Temeng, C., Yixuan, D., Bonsu, E., & Sintim, H. O. (2015). Bio-film formation mechanisms and targets for developing antiBio-film agents. Future Medicinal Chemistry, 7(4), 493–512. https://doi.org/10.4155/fmc.15.6

    Article  CAS  PubMed  Google Scholar 

  29. Kalpana, B. J., Aarthy, S., & Pandian, S. K. (2012). Anti-bio-film activity of α-amylase from Bacillus subtilis S8-18 against bio-film forming human bacterial pathogens. ApplBiochemBiotechnol, 167(6), 1778–1794. https://doi.org/10.1007/s12010-011-9526-2

    Article  CAS  Google Scholar 

  30. Catheter-associated urinary tract infections (CAUTI). (2015). Centers for Disease Control and Prevention. Available from: www.cdc.gov/hai/ca_uti/uti.html.

  31. Jacobsen, S. M., & Shirtliff, M. E. (2011). Proteus mirabilis bio-films and catheter-associated urinary tract infections. National Center for Biotechnology Information., 2(5), 460–465. https://doi.org/10.4161/viru.2.5.17783

    Article  Google Scholar 

  32. Bahadur, L., Ratna, S., & &Khana B. B. (2019). Comparative study of antimicrobial resistance and bio-film formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infection and Drug Resistance, 12, 957–963. https://doi.org/10.2147/IDR.S200988

    Article  Google Scholar 

  33. Francolini, I., & Donelli, G. (2010). Prevention and control of bio-filmbased medical-device-related infections. FEMS Immunology and Medical Microbiology, 59, 227–238. https://doi.org/10.1111/j.1574-695X.2010.00665.x

    Article  CAS  PubMed  Google Scholar 

  34. Namasivayam, S. K. R., Beninton, B., Christo, B., Karthigai, S. M., Kumar, K. A. M., & Deepak, K. (2013). Anti-bio-film effect of biogenic silver nanoparticles coated medical devices against bio-film of clinical isolate of Staphylococcus aureus.Global. Journal of Medical Research, 13(3), 1–7.

    Google Scholar 

  35. Trautner, B. W., & Darouiche, R. O. (2004). Role of biofilm in catheter-associated urinary tract infection. American Journal of Infection Control, 32(3), 177–183. https://doi.org/10.1016/j.ajic.2003.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bose, S., & Ghosh, A. K. (2015). Diagnosis of biofilm- associated infections in medical devices. Biomaterials and Medical Device - Associated Infections, 71–80. https://doi.org/10.1533/9780857097224.1.71

  37. Kafil, H. S., & Mobarez, A. M. (2015). Assessment of biofifilm formation by enterococci isolates from urinary tract infections with difffferent virulence profiles. Journal of King Saud University – Science, 27, 312–331. https://doi.org/10.1016/j.jksus.2014.12.007

    Article  Google Scholar 

  38. Lassek, C., Burghartz, M., Chaves-Moreno, D., Otto, A., Hentschker, C., Fuchs, S., Bernhardt, J., Jauregui, R., Neubauer, R., Becher, D., Pieper, D. H., Jahn, M., Jahn, D., & Riedel, K. (2015). A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections (CAUTIs). Molecular & Cellular Proteomics, 14(4), 989–1008. https://doi.org/10.1074/mcp.M114.043463

    Article  CAS  Google Scholar 

  39. Murugan, K., Selvanayaki, K., & Al-Sohaibani, S. (2016). Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters. Saudi Journal of Biological Sciences, 23, 150–159. https://doi.org/10.1016/j.sjbs.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  40. Sabir, N., Ikram, A., Zaman, G., Satti, L., Gardezi, A., Ahmed, A., & Ahmed, P. (2017). Bacterial biofilm-based catheter-associated urinary tract infections: causative pathogens and antibiotic resistance. American Journal of Infection Control, 45(10), 1101–1105. https://doi.org/10.1016/j.ajic.2017.05.009

    Article  PubMed  Google Scholar 

  41. Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Muhammad, I., Muhammad, A. N., Hussain, T., Muhammad, A., Muhammad, R., & Muhammad, A. K. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81, 7–11. https://doi.org/10.1016/j.jcma.2017.07.012

    Article  PubMed  Google Scholar 

  42. Bai, F., Cai, Z., & Yang, L. (2019). Recent progress in experimental and human disease-associated multi species biofilms. Computational and Structural Biotechnology Journal, 17, 1234–1244. https://doi.org/10.1016/j.csbj.2019.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Melton, C. N., & Anderson, G. G. (2019). Biofilms and disease: a persistent threat. Encyclopedia of Microbiology (Fourth Edition), 510–519. https://doi.org/10.1016/B978-0-12-801238-3.66119-6

  44. Solis-Velazquez, O. A., Gutiérrez-Lomelí, M., Guerreo-Medina, P. J., Rosas-García, M. L., Iñiguez-Moreno, M., & Avila-Novoa, M. G. (2020). Nosocomial pathogen biofilms on biomaterials: different growth medium conditions and components of biofilms produced in vitro. Journal of Microbiology, Immunology, and Infection. https://doi.org/10.1016/j.jmii.2020.07.002

  45. Francolini, I., Hall-Stoodley, L., & Stoodley, P. (2020). 2.2.8 - Biofilms, biomaterials, and device-related infections. Biomaterials Science (Fourth Edition), 823–840. https://doi.org/10.1016/B978-0-12-816137-1.00054-4

  46. Regev-Shoshani, G., Ko, M., Crowe, A., & Av-Gay, Y. (2011). Comparative efficacy of commercially available and emerging antimicrobial urinary catheters against bacteriuria caused by E. coli in vitro. Urology, 78(2), 334–339. https://doi.org/10.1016/j.urology.2011.02.063

    Article  PubMed  Google Scholar 

  47. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Frontiers in Microbiology, 539, 1–24. https://doi.org/10.3389/fmicb.2019.00539

    Article  Google Scholar 

  48. Baral, B., & Mozafari, M. R. (2020). Strategic moves of “Superbugs” against available chemical scaffolds: signaling, regulation, and challenges. American Chemical Society, 3(3), 373–400. https://doi.org/10.1021/acsptsci.0c00005

    Article  CAS  Google Scholar 

  49. Almalki, M. A., & Varghese, R. (2020). Prevalence of catheter associated bio-film producing bacteria and their antibiotic sensitivity pattern. Journal of King Saud University – Science, 32, 1427–1433. https://doi.org/10.1016/j.jksus.2019.11.037

    Article  Google Scholar 

  50. Maharjan, G., Khadka, P., Shilpakar, G. S., Chapagain, G., & Dhungana, G. R. (2018). Catheter-associated urinary tract infection and obstinate bio-film producers. Canadian Journal of Infectious Diseases and Medical Microbiology, 1–7. https://doi.org/10.1155/2018/7624857

  51. Aygun, F., Aygun, F. D., Varol, F., Durak, C., Çokugras, H., Camcıoglu, Y., & Çam, H. (2019). Infections with carbapenem-resistant Gram-negative bacteria are a serious problem among critically ill children: a single-centre retrospective study. Pathogens, 8(2), 69,1-13. https://doi.org/10.3390/pathogens8020069

    Article  CAS  PubMed Central  Google Scholar 

  52. Umema, A., Muhammad, Z. M., & Malik, A. (2020). Rising prevalence of multidrug-resistant uropathogenic bacteria from urinary tract infections in pregnant women. Journal of Taibah University Medical Sciences, 16(1), 102–111. https://doi.org/10.1016/j.jtumed.2020.10.010

    Article  Google Scholar 

  53. Hagos, D. G., Mezgebo, T. A., Berhane, S., & Medhanyie, A. A. (2019). Bio-film and hemagglutinin formation: a hallmark for drug resistant uropathogenic Escherichia coli. BMC Research Notes, 12, 358. https://doi.org/10.1186/s13104-019-4382-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gunardi, W. D., Karuniawati, A., Umbas, R., Bardosono, S., Lydia, A., Soebandrio, A., & Safari, D. (2021). Bio-film-producing bacteria and risk factors (gender and duration of catheterization) characterized as catheter-associated bio-film formation. International Journal of Microbiology., 8869275, 1–10. https://doi.org/10.1155/2021/8869275

    Article  Google Scholar 

  55. Snopkova, K., Dufkova, K., Klimesova, P., Vanerkova, M., Ruzicka, F., & Hola, V. (2020). Prevalence of bacteriocins and their co-association with virulence factors within Pseudomonas aeruginosa catheter isolates. International Journal of Medical Microbiology, 310, 151454. https://doi.org/10.1016/j.ijmm.2020.151454

    Article  CAS  PubMed  Google Scholar 

  56. Nagvekar, V., Sawant, S., & Supriya, A. (2020). Prevalence of multidrug-resistant Gram-negative bacteria cases at admission in a multi speciality hospital. Journal of Global Antimicrobial Resistance, 22, 457–461. https://doi.org/10.1016/j.jgar.2020.02.030

    Article  PubMed  Google Scholar 

  57. Quana, J., Dai, H., Liaoe, W., Zhao, D., Shif, Q., Zhang, L., Shi, K., Akova, M., & Yua, Y. (2021). Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: a prospective multicenter study. The Journal of Infection, 83, 175–181. https://doi.org/10.1016/j.jinf.2021.06.004

    Article  Google Scholar 

  58. Sabir, N., Ikram, A., & Zaman, G. (2017). Bacterial bio-film-based catheter-associated urinary tract infections: causative pathogens and antibiotic resistance. American Journal of Infection Control, 45(10), 1101–1105. https://doi.org/10.1016/j.ajic.2017.05.009

    Article  PubMed  Google Scholar 

  59. Davis, N. F., & Flood, H. D. (2011). The pathogenesis of urinary tract infections. Intech. https://doi.org/10.5772/22308

  60. Biswas, B. A., Naik, S., Nagarajan, D., & Iqubal, M. Z. (2020). Assessment of bio-film formation among the clinical isolates of Escherichia coli in a tertiary care hospital. Microbiology Research Journal International, 30(1), 26–32. https://doi.org/10.9734/mrji/2020/v30i130187

    Article  CAS  Google Scholar 

  61. Wabe, Y. A., Reda, D. Y., Abreham, E. T., Gobene, D. B., & Ali, M. M. (2020). Prevalence of asymptomatic bacteriuria, associated factors and antimicrobial susceptibility profile of bacteria among pregnant women attending Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia. Therapeutics and Clinical Risk Management, 16, 923–932.

    Article  CAS  Google Scholar 

  62. Ahmed, S. S., Shariq, A., Alsalloom, A. A., Babikir, I. H., & Alhomoud, B. N. (2019). Uropathogens and their antimicrobial resistance pattern: relationship with urinary tract infections. International Journal of Health Sciences, 13(2), 48–55.

    PubMed  PubMed Central  Google Scholar 

  63. Wang, S., Zhang, Y., Zhang, X., & Li, J. (2019). An evaluation of multidrug-resistant (MDR) bacteria in patients with urinary stone disease: data from a high-volume stone management center. World Journal of Urology, 38(2), 425–432. https://doi.org/10.1007/s00345-019-02772-0

    Article  PubMed  Google Scholar 

  64. Rajivgandhi, G. N., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Kanisha, C. C., Ramachandran, G., Manoharan, N., & Alanzi, K. F. (2021). Identification of carbapenems resistant genes on bio-film forming K. pneumoniae from urinary tract infection. Saudi Journal of Biological Sciences, 28, 1750–1756. https://doi.org/10.1016/j.sjbs.2020.12.016

    Article  CAS  PubMed  Google Scholar 

  65. Niveditha, S., Pramodhini, S., Umadevi, S., Kumar, S., & Stephen, S. (2012). The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). Journal of Clinical and Diagnostic Research, 6, 1478–1482. https://doi.org/10.7860/JCDR/2012/4367.2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anusha, S. U., & Sundar, S. K. (2014). Esbl& Bio-film-producing uropathogenic pathogens and their antibiotic susceptibility patterns from urinary tract infection of patients at Namakkal, Tamilnadu: a case study. Journal of Natural Remedies, 8(1), 381–386. https://doi.org/10.7324/JAPS.2014.40905

    Article  Google Scholar 

  67. Mak, R. H., & Kuo, H. J. (2006). Pathogenesis of urinary tract infection: an update. Current Opinion in Pediatrics, 18(2), 148–152. https://doi.org/10.1097/01.mop.0000193276.39495.0d

    Article  PubMed  Google Scholar 

  68. Khandelwal, P., Abraham, S. N., & Apodaca, G. (2009). Cell biology and physiology of the uroepithelium. American Journal of Physiology. Renal Physiology, 297, F1477–F1501. https://doi.org/10.1152/ajprenal.00327.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, G. (2011). Uroplakins in the lower urinary tract. International Neurourology Journal, 15, 4–12. https://doi.org/10.5213/inj.2011.15.1.4

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eto, D. S., Jones, T. A., Sundsbak, J. L., & Mulvey, M. A. (2007). Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathogens, 3, e100. https://doi.org/10.1371/journal.ppat.0030100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jacobsen, S. M., & Shirtliff, M. E. (2011). Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2, 460–465. https://doi.org/10.4161/viru.2.5.17783

    Article  PubMed  Google Scholar 

  72. Sharma, A. K., Dhasmana, N., Dubey, N., Kumar, N., Gangwal, A., Gupta, M., & Singh, Y. (2017). Bacterial virulence factors: secreted for survival. Indian Journal of Microbiology, 57, 1–10. https://doi.org/10.1007/s12088-016-0625-1

    Article  PubMed  Google Scholar 

  73. Flores-Mireles, A., Hreha, T. N., & Hunstad, D. A. (2019). Pathophysiology, treatment, and prevention of catheter-associated urinary tract infection. Topics in Spinal Cord Injury Rehabilitation, 25(3), 228–240. https://doi.org/10.1310/sci2503-228

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bien, J., Sokolova, O., & Bozko, P. (2012). Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. International Journal of Nephrology. https://doi.org/10.1155/2012/681473

  75. Boyd, E. F. (2012). Bacteriophages- encoded bacterial virulence factors and phage pathogenicity island interaction. Advances in Virus Research, 82, 91–118. https://doi.org/10.1016/B978-0-12-394621-8.00014-5

    Article  CAS  PubMed  Google Scholar 

  76. Trautner, B. W., & Darouiche, R. O. (2004). Role of bio-film in catheter-associated urinary tract infection. American Journal of Infection Control, 32, 177–183. https://doi.org/10.1016/j.ajic.2003.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  77. Warren, J. (2001). Catheter-associated urinary tract infections. International Journal of Antimicrobial Agents, 17, 299–303. https://doi.org/10.1016/s0924-8579(00)00359-9

    Article  CAS  PubMed  Google Scholar 

  78. Kurosaka, Y., Ishida, Y., Yamamura, E., Takase, H., Otani, T., & Kumon, H. (2001). A non-surgical rat model of foreign body-associated urinary tract infection with Pseudomonas aeruginosa. Microbiology and Immunology, 45, 9–15. https://doi.org/10.1111/j.1348-0421.2001.tb01268.x

    Article  CAS  PubMed  Google Scholar 

  79. Warren, J. (1997). Catheter-associated urinary tract infections. Infectious Disease Clinics of North America, 11, 609–622. https://doi.org/10.1016/s0891-5520(05)70376-7

    Article  CAS  PubMed  Google Scholar 

  80. Breitenbucher, R. (1984). Bacterial changes in the urine samples of patients with long-term indwelling catheters. Archives of Internal Medicine, 144, 1585–1588.

    Article  CAS  Google Scholar 

  81. Huigens III, R. W., Abouelhassan, Y., & Yang, H. (2019). Phenazine antibiotic inspired discovery of bacterial bio-film-eradicating agents. ChemMedChem, 20, 1–19. https://doi.org/10.1002/cbic.201900116

    Article  CAS  Google Scholar 

  82. Qureshi, S., Naveed, A. B., Yousafzai, M. T., Ahmad, K., Ansari, S., Lohana, H., Mukhtar, A., & Qamar, F. N. (2020). PLoS Neglected Tropical Diseases, 14(10), 1–10. https://doi.org/10.1371/journal.pntd.0008682

    Article  CAS  Google Scholar 

  83. Ahmed, N., Ali, Z., Riaz, M., & Zeshan, B. (2020). Evaluation of antibiotic resistance and virulence genes among clinical isolates of Pseudomonas aeruginosa from cancer patients. Asian Pacific Journal of Cancer Prevention, 21(5), 1333–1338. https://doi.org/10.31557/apjcp.2020.21.5.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pallett, A., & Hand, K. (2010). Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. Antibiotics and Chemotherapy, 65, 25–33. https://doi.org/10.1093/jac/dkq298

    Article  CAS  Google Scholar 

  85. Geta, K. (2019). Factors, impacts and possible solutions of antibiotic resistance: review article. World Scientific News, 138(2), 225–247.

    Google Scholar 

  86. Lahiri, D., Nag, M., Banerjee, R., Mukherjee, D., Garai, S., Sarkar, T., Dey, A., Sheikh, H. I., Pathak, S. K., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Amylases: biofilm inducer or biofilm inhibitor? Frontiers in Cellular and Infection Microbiology, 11, 660048. https://doi.org/10.3389/fcimb.2021.660048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, H., Moser, C., Wang, H. Z., Høiby, N., & Song, Z. J. (2015). Strategies for combating bacterial bio-film infections. International Journal of Oral Science, 7(1), 1–7. https://doi.org/10.1038/ijos.2014.65

    Article  CAS  PubMed  Google Scholar 

  88. Mariana, C. C., Alexandru, M. G., Veronica, L., Alexandra, B., Stefanos, T., Raluca, G., & Serban, B. (2014). Contribution of antimicrobial peptides to the development of new and efficient antimicrobial strategies. Current Proteomics, 11, 98–107. https://doi.org/10.2174/157016461102140917121943

    Article  CAS  Google Scholar 

  89. Tenke, P., Köves, B., Nagy, K., Hultgren, S. J., Mendling, W., Wullt, B., Grabe, B., Wagenlehner, F. M. E., Cek, M., Pickard, R., Botto, H., Naber, K. G., & Johansen, T. E. B. (2012). Update on bio-film infections in the urinary tract. World Journal of Urology, 30(1), 51–57. https://doi.org/10.1007/s00345-011-0689-9

    Article  PubMed  Google Scholar 

  90. Lahiri, D., Dash, S., Dutta, R., & Nag, M. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44, 52. https://doi.org/10.1007/s12038-019-9868-4

    Article  PubMed  Google Scholar 

  91. Iskandar, K., Molinier, L., Hallit, S., Sartelli, M., Catena, F., Coccolini, F., Craig Hardcastle, T., Roques, C., & Salameh, P. (2020). Drivers of antibiotic resistance transmission in low- and middle-income countries from a “One Health” perspective-a review. Antibiotics, 9(7), 372. https://doi.org/10.3390/antibiotics9070372

    Article  PubMed Central  Google Scholar 

  92. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in Microbiology, 12, 636588. https://doi.org/10.3389/fmicb.2021.636588

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bernardes, E. V. T., Lewenza, S., & Reckseidler-Zenteno, S. (2015). Current research approaches to target bio-film infections. National Center for Biotechnology Information, 3(6), 36–49. https://doi.org/10.14304/surya.jpr.v3n6.5

    Article  Google Scholar 

  94. Sharma, G., Sharma, S., Sharma, P., Charma, D., Chandola, D., Dang, S., Gupta, S., & &Gabrani R. (2016). Escherichia coli bio-film: development and therapeutic strategies. Journal of Applied Microbiology, 121, 309–319. https://doi.org/10.1111/jam.13078

    Article  CAS  PubMed  Google Scholar 

  95. Junker, L. M., & Clardy, J. (2007). High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa bio-film development. Antimicrobial Agents and Chemotherapy, 51(10), 35, 82–90. https://doi.org/10.1128/AAC.00506-07

    Article  CAS  Google Scholar 

  96. Davies, D. G., & Marques, C. N. (2009). A fatty acid messenger is responsible for inducing dispersion in microbial bio-films. Journal of Bacteriology, 191(5), 1393–1403. https://doi.org/10.1128/JB.01214-08

    Article  CAS  PubMed  Google Scholar 

  97. Soothill, J. (2013). Use of bacteriophages in the treatment of Pseudomonas aeruginosa infections. Expert Review of Anti-Infective Therapy, 11(9), 909–915. https://doi.org/10.1586/14787210.2013.826990

    Article  CAS  PubMed  Google Scholar 

  98. Mohanta, Y. K., Biswas, K., Jena, S. K., Hashem, A., Abd-Allah, E. F., & Mohanta, T. K. (2020). Abutilon indicum (L.) Sweet leaf extracts assisted bio-inspired synthesis of electronically charged silver nano-particles with potential antimicrobial, antioxidant and cytotoxic properties. American Scientific Publishers, 7(1), 94–100. https://doi.org/10.1166/mat.2018.1484

    Article  CAS  Google Scholar 

  99. Dubey, P., Tiwari, A., Tiwari, P., Awasthi, S., Rai, A. K., & Watal, G. (2019). Phytochemical and phyto elemental profile of J. officinale. International Journal of Pharmacognosy and Phytochemical Research, 11(1), 5–9.

    Google Scholar 

  100. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6, 42. https://doi.org/10.3390/plants6040042

    Article  CAS  PubMed Central  Google Scholar 

  101. Anchez, E., Morales, C. R., Castillo, S., Leos-Rivas, C., García-Becerra, L., & Martínez, D. M. O. (2016). Antibacterial and anti bio-film activity of methanolic plant extracts against nosocomial microorganisms. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2016/1572697

  102. Famuyide, I. M., Aro, A. O., Fasina, F. O., Eloff, J. N., & McGaw, L. J. (2019). Antibacterial and antiBio-film activity of acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1), 141. https://doi.org/10.1186/s12906-019-2547-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Taid, T. C., Rajkhowa, R. C., & Kalita, J. C. (2014). A study on the medicinal plants used by the local traditional healers of Dhemaji district, Assam, India for curing reproductive health related disorders. Advances in Applied Science Research, 5(1), 296–301.

    Google Scholar 

  104. Das, S. (2020). Natural therapeutics for urinary tract infections—a review. Future Journal of Pharmaceutical Sciences., 6, 64. https://doi.org/10.1186/s43094-020-00086-2

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lagha, R., Abdallah, F. B., & AL-Sarhan, B. O. & Al-Sodany, Y. (2019). Antibacterial and bio-film inhibitory activity of medicinal plant essential oils against Escherichia coli Isolated from UTI patients. Molecules, 24(6), 1161. https://doi.org/10.3390/molecules24061161

    Article  CAS  PubMed Central  Google Scholar 

  106. Tenke, P., Koves, B., & Johansen, T. E. B. (2014). An update on prevention and treatment of catheter-associated urinary tract infections. Current Opinion in Infectious Diseases, 27(1), 102–107. https://doi.org/10.1097/QCO.0000000000000031

    Article  PubMed  Google Scholar 

  107. Danese, P. N. (2002). Antibiofilm approaches: prevention of catheter colonization. Chemistry & Biology, 9, 873–880.

    Article  CAS  Google Scholar 

  108. Nowatzki, P. J., Koepsel, R. R., Stoodley, P., Min, K., Harper, A., Murata, H., Donfack, J., Hortelano, E. R., Ehrlich, G. D., & Russell, A. J. (2012). Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomaterialia, 8, 1869–1880. https://doi.org/10.1016/j.actbio.2012.01.032

    Article  CAS  PubMed  Google Scholar 

  109. Sabharwal, N., Chhibber, S., & Harjai, K. (2014). New possibility for providing protection against urinary tract infection caused by Pseudomonas aeruginosa by non-adjuvanted flagellin ‘b’ induced immunity. Immunology Letters, 162(2), 229–238. https://doi.org/10.1016/j.imlet.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  110. Fisher, L. E., Hook, A. L., Ashraf, W., Yousef, A., Barrett, D. A., Scurr, D. J., Chen, X., Smith, E. F., Fay, D. M., Parmenter, C. D. J., Parkinson, R., & Bayston, R. (2015). Biomaterial modification of urinary catheters with antimicrobials to give long-term broad spectrum anti-biofilm activity. Journal of Controlled Release, 202, 57. https://doi.org/10.1016/j.jconrel.2015.01.037

    Article  CAS  PubMed  Google Scholar 

  111. Singha, P., Locklin, J., & Handa, H. (2017). A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomaterialia, 50, 20–40. https://doi.org/10.1016/j.actbio.2016.11.070

    Article  CAS  PubMed  Google Scholar 

  112. Andrade, M., Malheiro, J., Borges, F., Saavedra, M. J., & Simo˜ es, M. (2020). The potential of phytochemical products in biofilm control. Recent Trends in Biofilm Science and Technology, 273–293. https://doi.org/10.1016/B978-0-12-819497-3.00012-X

  113. Lahiri, D., Nag, M., Dutta, B., Dey, S., Mukherjee, D., Joshi, S. J., & Ray, R. R. (2021). Antibiofilm and anti-quorum sensing activities of eugenol and linalool from Ocimumtenuiflorum against Pseudomonas aeruginosa biofilm. Journal of Applied Microbiology. https://doi.org/10.1111/jam.15171

  114. Low, J. L., Kao, P. H. N., Tambyah, P. A., Koh, Hua Ling, G. L. E., Kline, K. A., Cheow, W. S., & Leong, S. S. J. (2021). Development of a polymer-based antimicrobial coating for efficacious urinary catheter protection. Biotechnology Notes., 2, 1–10. https://doi.org/10.1016/j.biotno.2020.12.001

    Article  Google Scholar 

  115. Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Seyed, F. N., & Sayed, M. N. (2017). Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiological Research, 196, 44–68. https://doi.org/10.1016/j.micres.2016.12.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The kind support of the Senior Management team, Vice-Chancellor of Centurion University Prof. Supriya Pattanayak; Dean School of Paramedics and Allied Health Sciences (SoPAHS) Prof. S.K. Jha; Head of the Department, SoPAHS, Dr. Soumya Jal is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing — original draft preparation: Susmita Chakrabarty (PhD scholar); supervision, helping in framing and editing — Monali Priyadarsini Mishra (supervisor) and Dipankar Bhattacharyay (co-supervisor).

Corresponding author

Correspondence to Monali P. Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarty, S., Mishra, M.P. & Bhattacharyay, D. Targeting Microbial Bio-film: an Update on MDR Gram-Negative Bio-film Producers Causing Catheter-Associated Urinary Tract Infections. Appl Biochem Biotechnol 194, 2796–2830 (2022). https://doi.org/10.1007/s12010-021-03711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03711-9

Keywords

Navigation