Skip to main content
Log in

Formulation, Solubilization, and In Vitro Characterization of Quercetin-Incorporated Mixed Micelles of PEO-PPO-PEO Block Copolymers

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Quercetin (QCN) is a plant polyphenol with a variety of medicinal effects. Poor water solubility, on the other hand, restricts its therapeutic effectiveness. The purpose of this study was to develop mixed micellar systems using two biocompatible amphiphilic PEO-PPO-PEO triblock copolymers, Pluronic P123 (EO20-PO70-EO20) and Pluronic F88 (EO104-PO39-EO104), in order to enhance the aqueous solubility and oral bioavailability of QCN drug. The critical micelle concentrations (CMCs) of mixed P123/F88 micellar solutions were investigated using UV–visible spectroscopy with pyrene as a probe. Mixed P123/F88 micelles have low CMCs, indicating that they have a stable micelle structure even when diluted. The solubility of QCN in aqueous mixed P123/F88 micellar solutions at different temperatures was investigated to better understand drug entrapment. The QCN solubility increased with increasing temperature in the mixed P123/F88 micellar system. The QCN-incorporated mixed P123/F88 micelles were prepared using the thin-film hydration method and were well characterized in terms of size and morphology, compatibility, in vitro release and antioxidant profile. In addition, the cell proliferation activity of the mixed micelles was evaluated in the MCF-7 cell line. The QCN-incorporated mixed P123/F88 micelles had a small particle size (< 25 nm) and a negative zeta potential with a spherical shape. The in vitro release behaviour of QCN from a mixed P123/F88 micellar system was slower and more sustained at physiological conditions. The oxidation resistance of QCN-incorporating mixed P123/F88 micelles was shown to be considerably higher than that of pure QCN. An in vitro cell proliferation study revealed that QCN-incorporated mixed micells were effective in inhibiting tumour cell growth. In conclusion, the QCN-incorporated mixed P123/F88 micelle may be a promising approach to increase QCN oral bioavailability, antioxidant activity, and cell viability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

References

  1. Date, A. A., Nagarsenker, M. S., Patere, S., Dhawan, V., Gude, R. P., Hassan, P. A., & Fahr, A. (2011). Lecithin-based novel cationic nanocarriers (Leciplex) II: Improving therapeutic efficacy of quercetin on oral administration. Molecular Pharmaceutics, 8(3), 716–726.

    Article  CAS  PubMed  Google Scholar 

  2. Mukhopadhyay, P., & Prajapati, A. K. (2015). Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers–a review. RSC Advances, 5(118), 97547–97562.

    Article  CAS  Google Scholar 

  3. Chen, C., Zhou, J., & Ji, C. (2010). Quercetin: A potential drug to reverse multidrug resistance. Life Sciences, 87(11–12), 333–338.

    Article  CAS  PubMed  Google Scholar 

  4. Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research, 22(4), 375–383.

    Article  CAS  PubMed  Google Scholar 

  5. Mangels, A. R., Holden, J. M., Beecher, G. R., Forman, M. R., & Lanza, E. (1993). Carotenoid content of fruits and vegetables: an evaluation of analytic data. Journal of the American Dietetic Association, 93(3), 284–296.

    Article  CAS  PubMed  Google Scholar 

  6. Bronner, C., & Landry, Y. (1985). Kinetics of the inhibitory effect of flavonoids on histamine secretion from mast cells. Agents and Actions., 16(3), 147–151.

    Article  CAS  PubMed  Google Scholar 

  7. Kaul, T. N., Middleton, E., Jr., & Ogra, P. L. (1985). Antiviral effect of flavonoids on human viruses. Journal of Medical Virology, 15(1), 71–79.

    Article  CAS  PubMed  Google Scholar 

  8. Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology & Medicine, 16(6), 845–850.

    Article  CAS  Google Scholar 

  9. Morand, C., Crespy, V., Manach, C., Besson, C., Demigne, C., & Remesy, C. (1998). Plasma metabolites of quercetin and their antioxidant properties. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 275(1), R212–R219.

    Article  CAS  Google Scholar 

  10. Plumb, G. W., Price, K. R., & Williamson, G. (1999). Antioxidant properties of flavonol glycosides from green beans. Redox Report, 4(3), 123–127.

    Article  CAS  PubMed  Google Scholar 

  11. Fiorani, M., de Sanctis, R., Menghinello, P., Cucchiarini, L., Cellini, B., & Dachà, M. (2001). Quercetin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells. Free Radical Research, 34(6), 639–648.

    Article  CAS  PubMed  Google Scholar 

  12. Pralhad, T., & Rajendrakumar, K. (2004). Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. Journal of Pharmaceutical and Biomedical Analysis, 34(2), 333–339.

    Article  CAS  PubMed  Google Scholar 

  13. Movassaghian, S., Merkel, O. M., & Torchilin, V. P. (2015). Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(5), 691–707.

    CAS  PubMed  Google Scholar 

  14. Chiappetta, D. A., & Sosnik, A. (2007). Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. European Journal of Pharmaceutics and Biopharmaceutics, 66(3), 303–317.

    Article  CAS  PubMed  Google Scholar 

  15. Gaucher, G., Dufresne, M. H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J. C. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 109(1–3), 169–188.

    Article  CAS  PubMed  Google Scholar 

  16. Bae, Y. H., & Yin, H. (2008). Stability issues of polymeric micelles. Journal of Controlled Release, 131(1), 2–4.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, C. K., Lo, C. L., Chen, H. H., & Hsiue, G. H. (2007). Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Advanced Functional Materials, 17(14), 2291–2297.

    Article  CAS  Google Scholar 

  18. Oerlemans, C., Bult, W., Bos, M., Storm, G., Nijsen, J. F. W., & Hennink, W. E. (2010). Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharmaceutical Research, 27(12), 2569–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pitto-Barry, A., & Barry, N. P. (2014). Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polymer Chemistry, 5(10), 3291–3297.

    Article  CAS  Google Scholar 

  20. Almeida, M., Magalhães, M., Veiga, F., & Figueiras, A. (2018). Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. Journal of Polymer Research, 25(1), 1–14.

    Article  CAS  Google Scholar 

  21. Gente, G., Iovino, A., & La Mesa, C. (2004). Supramolecular association of a triblock copolymer in water. Journal of Colloid and Interface Science, 274(2), 458–464.

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez-Lorenzo, C., Sosnik, A., & Concheiro, A. (2011). PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Current Drug Targets, 12(8), 1112–1130.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Y., Khan, A. R., Yu, D., Zhai, Y., Ji, J., Shi, Y., & Zhai, G. (2019). Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. Journal of Colloid and Interface Science, 553, 567–580.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, H., Petrosyan, A., Osna, N. A., Liu, T., Olou, A. A., Alakhova, D. Y., & Bronich, T. K. (2019). Pluronic block copolymers enhance the anti-myeloma activity of proteasome inhibitors. Journal of Controlled Release, 306, 149–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alexandridis, P., Holzwarth, J. F., & Hatton, T. A. (1994). Micellization of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules, 27(9), 2414–2425.

    Article  CAS  Google Scholar 

  26. Wakaskar, R. R., Bathena, S. P. R., Tallapaka, S. B., Ambardekar, V. V., Gautam, N., Thakare, R., & Vetro, J. A. (2015). Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration. Pharmaceutical Research, 32(3), 1028–1044.

    Article  CAS  PubMed  Google Scholar 

  27. Sezgin, Z., Yüksel, N., & Baykara, T. (2006). Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. European Journal of Pharmaceutics and Biopharmaceutics, 64(3), 261–268.

    Article  CAS  PubMed  Google Scholar 

  28. Batrakova, E. V., & Kabanov, A. V. (2008). Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of Controlled Release, 130(2), 98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tiwari, S., Kansara, V., & Bahadur, P. (2020). Targeting anticancer drugs with pluronic aggregates: Recent updates. International Journal of Pharmaceutics., 586, 119544.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao, B., Zhang, M., Viennois, E., Zhang, Y., Wei, N., Baker, M. T., & Merlin, D. (2015). Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials, 48, 147–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y., Song, W., Geng, J., Chitgupi, U., Unsal, H., Federizon, J., & Lovell, J. F. (2016). Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 7(1), 1–9.

    Google Scholar 

  32. Aydin, F., Chu, X., Uppaladadium, G., Devore, D., Goyal, R., Murthy, N. S., & Dutt, M. (2016). Self-assembly and critical aggregation concentration measurements of ABA triblock copolymers with varying B block types: model development, prediction, and validation. The Journal of Physical Chemistry B, 120(15), 3666–3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jackson, J. K., Springate, C. M., Hunter, W. L., & Burt, H. M. (2000). Neutrophil activation by plasma opsonized polymeric microspheres: inhibitory effect of Pluronic F127. Biomaterials, 21(14), 1483–1491.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, E. S., Oh, Y. T., Youn, Y. S., Nam, M., Park, B., Yun, J., & Oh, K. T. (2011). Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Colloids and Surfaces B: Biointerfaces, 82(1), 190–195.

  35. Sharma, R. K., Shaikh, S., Ray, D., & Aswal, V. K. (2018). Binary mixed micellar systems of PEO-PPO-PEO block copolymers for lamotrigine solubilization: a comparative study with hydrophobic and hydrophilic copolymer. Journal of Polymer Research, 25(3), 1–11.

    Article  CAS  Google Scholar 

  36. Nandni, D., Vohra, K. K., & Mahajan, R. K. (2009). Study of micellar and phase separation behavior of mixed systems of triblock polymers. Journal of Colloid and Interface Science, 338(2), 420–427.

    Article  CAS  PubMed  Google Scholar 

  37. Aswal, V. K., & Goyal, P. S. (2000). Small-angle neutron scattering diffractometer at Dhruva reactor. Current Science, 79(7), 947–953.

    Google Scholar 

  38. Gabriele, B., Fazio, A., Carchedi, M., & Plastina, P. (2012). In vitro antioxidant activity of extracts of Sybaris liquorice roots from Southern Italy. Natural Product Research, 26(23), 2176–2181.

    Article  CAS  PubMed  Google Scholar 

  39. Pursuwani, B. H., Bhatt, B. S., Vaidya, F. U., Pathak, C., & Patel, M. N. (2021). etrazolo [1, 5-a] quinoline moiety-based Os (IV) complexes: DNA binding/cleavage, bacteriostatic and photocytotoxicity assay. Journal of Biomolecular Structure & Dynamics, 39(8), 2894–2903.

    Article  CAS  Google Scholar 

  40. Liu, Y., Yang, J., Wang, X., Liu, J., Wang, Z., Liu, H., & Chen, L. (2016). In vitro and in vivo evaluation of redoxresponsive sorafenib carrier nanomicelles synthesized from poly (acryic acid)-cystamine hydrochloride-D-α-tocopherol succinate. Journal of Biomaterials Science, Polymer Edition, 27(17), 1729–1747.

    Article  CAS  Google Scholar 

  41. Cagel, M., Tesan, F. C., Bernabeu, E., Salgueiro, M. J., Zubillaga, M. B., Moretton, M. A., & Chiappetta, D. A. (2017). Polymeric mixed micelles as nanomedicines: Achievements and perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 113, 211–228.

    Article  CAS  PubMed  Google Scholar 

  42. da Silva, R. C., & Loh, W. (1998). Effect of additives on the cloud points of aqueous solutions of ethylene oxide–propylene oxide–ethylene oxide block copolymers. Journal of Colloid and Interface Science, 202(2), 385–390.

    Article  Google Scholar 

  43. Span, K., Verhoef, J. J., Hunt, H., van Nostrum, C. F., Brinks, V., Schellekens, H., & Hennink, W. E. (2016). A novel oral iron-complex formulation: Encapsulation of hemin in polymeric micelles and its in vitro absorption. European Journal of Pharmaceutics and Biopharmaceutics, 108, 226–234.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, L., Du, J., Duan, Y., Zhang, H., Yang, C., Cao, F., & Zhai, G. (2012). Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids and Surfaces B: Biointerfaces, 97, 101–108.

  45. Alexandridis, P., Nivaggioli, T., & Hatton, T. A. (1995). Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. Langmuir, 11(5), 1468–1476.

    Article  CAS  Google Scholar 

  46. Zhao, L., Shi, Y., Zou, S., Sun, M., Li, L., & Zhai, G. (2011). Formulation and in vitro evaluation of quercetin loaded polymeric micelles composed of pluronic P123 and Da-tocopheryl polyethylene glycol succinate. Journal of Biomedical Nanotechnology, 7(3), 358–365.

    Article  CAS  PubMed  Google Scholar 

  47. Fraile, M., Buratto, R., Gomez, B., Martin, A., & Cocero, M. J. (2014). Enhanced delivery of quercetin by encapsulation in poloxamers by supercritical antisolvent process. Industrial and Engineering Chemistry Research, 53(11), 4318–4327.

    Article  CAS  Google Scholar 

  48. Su, Y. L., Wang, J., & Liu, H. Z. (2002). FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO− PPO− PEO block copolymer micelles. Langmuir, 18(14), 5370–5374.

    Article  CAS  Google Scholar 

  49. Cai, X., Liu, M., Zhang, C., Sun, D., & Zhai, G. (2016). pH-responsive copolymers based on pluronic P123-poly (β-amino ester): synthesis, characterization and application of copolymer micelles. Colloids and Surfaces B: Biointerfaces, 142, 114–122.

  50. Lu, Z., Bu, C., Hu, W., Zhang, H., Liu, M., Lu, M., & Zhai, G. (2018). Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Bioscience, Biotechnology, and Biochemistry, 82(2), 238–246.

    Article  CAS  PubMed  Google Scholar 

  51. Mu, L., Teo, M. M., Ning, H. Z., Tan, C. S., & Feng, S. S. (2005). Novel powder formulations for controlled delivery of poorly soluble anticancer drug: Application and investigation of TPGS and PEG in spray-dried particulate system. Journal of Controlled Release, 103(3), 565–575.

    Article  CAS  PubMed  Google Scholar 

  52. Boots, A. W., Li, H., Schins, R. P., Duffin, R., Heemskerk, J. W., Bast, A., & Haenen, G. R. (2007). The quercetin paradox. Toxicology and Applied Pharmacology, 222(1), 89–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledged Center of Excellence in Polymers (CoEP), Applied Chemistry Department, Faculty of Technology and Engineering for necessary lab facilities.

Funding

This work was supported by the UGC-DAE Research Project (CRS-M-205), Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.

Author information

Authors and Affiliations

Authors

Contributions

Hemil S Patel, Sofiya J Shaikhand Rakesh K Sharma designed the study, analysed the data, and wrote the final manuscript. Debes Ray andVinod K Aswal contributed to the SANS measurments. Foram Vaidya and Chandramani Pathak carried out the molecular biology studies. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rakesh K. Sharma.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

I confirm that the final manuscript has been seen and approved by all the authors. The undersigned author transfers all copyright ownership of the manuscript to the International Journal of Applied Biochemistry and Biotechnology in the event the work is published.

Consent for Publication

The authors declare that they consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H.S., Shaikh, S.J., Ray, D. et al. Formulation, Solubilization, and In Vitro Characterization of Quercetin-Incorporated Mixed Micelles of PEO-PPO-PEO Block Copolymers. Appl Biochem Biotechnol 194, 445–463 (2022). https://doi.org/10.1007/s12010-021-03691-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03691-w

Keywords

Navigation