IEA. (2020) Coal 2020: Analysis and forecast to 2025 International Energy Agency Report.
Mills, S. J. (2011) Global perspective on the use of low quality coals, IEA Clean Coal Centre.
Duzyol, S. and Sensogut, C. (2018) Investigation of the thermal improvement and the kinetic analysis of the enriched coal. J. Combust. 2018, 1–10.
Zhao, Y., Yang, X., Luo, Z., Duan, C., & Song, S. (2014). Progress in developments of dry coal beneficiation. International Journal of Coal Science & Technology, 1, 103–112.
Article
Google Scholar
Umar, D., & Daulay, B. (2011). Improvement of low rank coal properties by various upgrading processes. Indones Min J, 14, 17–29.
Google Scholar
Lingam, R. K., Suresh, A., Dash, P. S., Kumar, S. and Ray, T. (2016) Upgrading Coal washery rejects through caustic- Acid Leaching upgrading coal washery rejects through caustic-acid leaching. Mineral Processing and Extractive Metallurgy Review, Taylor & Francis 37, 69–72.
Gillenwater, L. E., & Gillenwater, B. L. E. (1951). Coal washery wastes in West Virginia. Sewage Ind Waste, 23, 869–874.
Google Scholar
Chugh, Y. P., & Behum, P. T. (2014). Coal waste management practices in the USA : An overview. International Journal of Coal Science & Technology, 1, 163–176.
Article
Google Scholar
Behum, P. T., Chugh, Y. P., & Lefticariu, L. (2018). Management of coal processing wastes: Studies on an alternate technology for control of sulfate and chloride discharge. International Journal of Coal Science & Technology, 5, 54–63.
CAS
Article
Google Scholar
MoEF. (2010) Environmental Impact Assessment Guidance Manual for Coal Washeries, Ministry of Environment and Forests, Govt of India.
Yu, Y., Li, Z., Zhang, N. and Qu, J. (2020) Deep recovery study for coking coal washery rejects using a comprehensive process. Energy Sources, Part A Recover. Util. Environ. Eff., Taylor & Francis 1–13.
Opara, A., Adams, D. J., Free, M. L., McLennan, J., & Hamilton, J. (2012). Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. International Journal of Coal Geologys, 96–97, 1–8.
Google Scholar
Sekhohola, L. M., Igbinigie, E. E., & Cowan, A. K. (2013). Biological degradation and solubilisation of coal. Biodegradation, 24, 305–18.
CAS
Article
Google Scholar
Manoj, B. (2013) Bio-demineralization of Indian bituminous coal by Aspergillus niger and characterization of the products 8, 49–54.
Silva-Stenico, M. E., Vengadajellum, C. J., Janjua, H. A., Harrison, S. T. L., Burton, S. G., & Cowan, D. A. (2007). Degradation of low rank coal by Trichoderma atroviride ES11. Journal of Industrial Microbiology and Biotechnology, 34, 625–31.
CAS
Article
Google Scholar
Denizli, A., Sakintuna, B., Taralp, A., & Yu, Y. (2003). Bio-liquefaction/solubilization of low-rank Turkish lignites and characterization of the products. Energy and Fuels, 17, 1068–1074.
Article
Google Scholar
Kang, H., Liu, X., Zhang, Y. and Zhao, S. (2021) Environmental effects bacteria solubilization of shenmu lignite : Influence of surfactants and characterization of the biosolubilization products. Energy Sources, Part A Recovery Util. Environ. Eff., Taylor & Francis 43, 1162–1180.
Tripathi, R.C., V. K. Jain, P. S. M. T., Tripathi, R., Jain, V. and Tripathi, P. (2009) Fungal biosolubilization of neyveli lignite into humic acid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32, 72–82.
Kwiatos, N., Krzepkowska, M. J., Strzelecki, B. and Bielecki, S. (2018) Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase. AMB Express, Springer Berlin Heidelberg 8, 1–9.
Crawford, D. L. and Nielsen, E. P. (1995) Biotransformation of coal substructure model compounds by microbial enzymes. Applied Biochemistry and Biotechnology 54.
Strapoc, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A. V., Wawrik, B., Turich, C., & Ashby, M. (2011). Biogeochemistry of microbial coal-bed methane. Annual Review of Earth and Planetary Sciences, 39, 617–56.
CAS
Article
Google Scholar
Su, X., Zhao, W. and Xia, D. (2018) The diversity of hydrogen ‑ producing bacteria and methanogens within an in situ coal seam. Biotechnology for Biofuels, BioMed Central 11, 1–18.
Gupta, P. and Gupta, A. (2014) Biogas production from coal via anaerobic fermentation. Fuel, Elsevier Ltd 118, 238–242.
Gupta, A. and Birendra, K. (2000) Biogasification of coal using different sources of micro-organisms. Fuel 79, 103–105.
Pamidipati, S. and Ahmed, A. (2017) Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Appl Biochem Biotechnology 181, 1561–1572.
Pamidipati, S. and Ahmed, A. (2020) A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica (Praha), Folia Microbiologica 65, 431–437.
Vogel, H. J. (1964) Distribution of lysine pathways among fungi: Evolutionary implications. Am Nat XCVIII, 435–446.
Lowry, O. H., Rosebrough, N. J., Randall, R. J., & Lewis, A. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.
CAS
Article
Google Scholar
Baresi, L., Mah, R. A., Ward, D. M. and Kaplan, I. R. (1978) Methanogenesis from acetate: Enrichment Studies App 36, 186–197.
Atlas, R. M. (2010) Handbook of microbiological media. Handbook Microbiology Media
Buchauer, K. (1998). A comparison of two simple titration procedures to determine volatile fatty acids in influents to waste-water and sludge treatment processes. Water SA, 24, 49–56.
CAS
Google Scholar
.Drosg, B. (2013) Process monitoring in biogas plants, IEA Bioenergy
Toshiaki Kabe, Atsushi Ishihara, Eika Weihua Qian, I Putu Sutrisna, Y. K. (2004) Microbial depolymerization of coal. In Studies in surface science and catalysis, pp 303–314, Elsevier.
Srinivasan, C., Souza, T. M. D., & Boominathan, K. (1995). Demonstration of Laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental Microbiology, 61, 4274–4277.
CAS
Article
Google Scholar
Smoleňová, E., Pokorný, R., Kaliňák, M., Liptaj, T., Šimkovič, M. and Varečka, Ľ. (2020) Degradation of low-rank coal excavated from coal-mine Záhorie by filamentous fungi 13, 14–22.
Approach, A. B. (2013) Structural and phylogenetic analysis of laccases from trichoderma : A bioinformatic approach 8.
Strzelecki, B. and Kwiatos, N. Effect of coal pretreatment on brown coal biosolubilisation by Fusarium oxysporum 1101.
Webb, H. K., Arnott, J., Crawford, R. J. and Ivanova, E. P. (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel). 1–18.
Wang, B., Tai, C., Wu, L., Chen, L., Liu, J., Hu, B., & Song, D. (2017). Methane production from lignite through the combined effects of exogenous aerobic and anaerobic micro fl ora. International Journal of Coal Geology, 173, 84–93.
CAS
Article
Google Scholar
.Kuznetsov, P. N., Kolesnikova, S. M. and Kuznetsova, L. I. (2013) Steam gasification of different brown coals catalysed by the naturally occurring calcium species. International Journal of Clean Coal and Energy 1–11.
.Miao, Z., Pei, Z., Gao, M., Wan, K. and He, Q. (2019) Exploring a new way to generate mesopores in lignite by employing steam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Taylor & Francis 0, 1–11.