Skip to main content
Log in

Functional Immobilization of a Biofilm-Releasing Glycoside Hydrolase Dispersin B on Magnetic Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dispersin B (DspB) is a member of glycoside hydrolase family 20 (GH20) and catalyzes degradation of biofilms forming by pathogenic bacteria such as Staphylococcus aureus. Magnetoreceptor (MagR) is a magnetic protein that can be used as a fusion partner for functionally immobilizing proteins on magnetic surfaces. In the present study, a recombinant protein DspB-MagR was constructed by fusing MagR to the C-terminus of DspB and expressed in Escherichia coli. Magnetic immobilization of purified DspB-MagR on magnetic core–shell structured Fe3O4@SiO2 nanoparticles was achieved and characterized by means of various techniques including SDS-PAGE, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential measurement, and scanning electron microscopy. It was evaluated the influence of temperature, pH, and storage time on the performance of immobilized DspB-MagR on Fe3O4@SiO2 nanoparticles. Removal of biofilms forming by Staphylococcus aureus and other medical sourced bacterial species was achieved by using Fe3O4@SiO2 nanoparticles loading with DspB-MagR. This work promoted potential applications of DspB and similar enzymes for medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data and material were obtained from experimental tests in triplicate and described clearly in the text.

Code Availability

Not applicable.

References

  1. Elizabeth, A. G., Mario, P. D., Donato, V. P., Jaime, R. G., Martin, M. A., Gabriel, M. C., & Fidel, M. G. (2018). Adhesion forces of biofilms developed in vitro from clinical strains of skin wounds. Materials Science & Engineering C-Materials for Biological Applications, 82, 336–344.

    Article  CAS  Google Scholar 

  2. Marcano, A., Haidar, N. B., Marais, S., Valleton, J. M., & Duncan, A. C. (2017). Designing biodegradable PHA-based 3D scaffolds with antibiofilm properties for wound dressings: Optimization of the microstructure/nanostructure. ACS Biomaterials-Science & Engineering, 3(12), 3654–3661.

    Article  CAS  Google Scholar 

  3. Ashutosh, K., Anwar, A., Mamta, R., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307, 481–489.

    Article  CAS  Google Scholar 

  4. Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81, 7–11.

    Article  Google Scholar 

  5. Solano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 18, 96–104.

    Article  CAS  Google Scholar 

  6. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontier in Microbiology, 12, 636588.

    Article  Google Scholar 

  7. Flemming, H., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633.

    Article  CAS  Google Scholar 

  8. Kaplan, J. B., Velliyagounder, K., Ragunath, C., Rohde, H., Mack, D., Knobloch, J. K. M., & Ramasubbu, N. (2004). Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. Journal of Bacteriology, 186(24), 8213–8220.

    Article  CAS  Google Scholar 

  9. Donelli, G., Francolini, I., Romoli, D., Guaglianone, E., Piozzi, A., Ragunath, C., & Kaplan, J. B. (2007). Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrobial Agents and Chemotherapy, 51, 2733–2740.

    Article  CAS  Google Scholar 

  10. Darouiche, R. O. (2004). Treatment of infections associated with surgical implants. New England Journal of Medicine, 350, 1422–1429.

    Article  CAS  Google Scholar 

  11. Wille, J., & Coenye, T. (2020). Biofilm dispersion: The key to biofilm eradication or opening Pandora’s box? Biofilm, 2, 100027.

    Article  Google Scholar 

  12. Belfield, K., Bayston, R., Hajduk, N., Levell, G., Birchall, J. P., & Daniel, M. (2017). Evaluation of combination of putative anti-biofilm agents and antibiotics to eradicate biofilm of Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 72(9), 2531–2538.

    Article  CAS  Google Scholar 

  13. Marcano, A., Ba, O., Thebault, P., Crétois, R., Marais, S., & Duncan, A. C. (2015). Elucidation of innovative antibiofilm materials. Colloid and Surfaces B - Biointerfaces, 136, 56–63.

    Article  CAS  Google Scholar 

  14. Pavlukhina, S. V., Kaplan, J. B., Xu, L., Chang, W., Yu, X. J., Madhyastha, S., Yakandawala, N., Mentbayeva, A., Khan, B., & Sukhishvili, S. A. (2012). Noneluting enzymatic antibiofilm coatings. ACS Applied Materials & Interfaces, 4(9), 4708–4716.

    Article  CAS  Google Scholar 

  15. Tan, Y. L., Ma, S., Liu, C. G., Yu, W. G., & Han, F. (2015). Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles. Microbiological Research, 178, 35–41.

    Article  CAS  Google Scholar 

  16. Chen, K. J., & Lee, C. K. (2018). Twofold enhanced dispersin B activity by N-terminal fusion to silver-binding peptide for biofilm eradication. International Journal of Biological Macromolecules, 118, 419–426.

    Article  CAS  Google Scholar 

  17. Qin, S., Yin, H., Yang, C., Dou, Y., Liu, Z., Zhang, P., Yu, H., Huang, Y., Feng, J., Hao, J., Hao, J., Deng, L., Yan, X., Dong, X., Zhao, Z., Jiang, T., Wang, H. W., Luo, S., & Xie, C. (2016). A magnetic protein biocompass. Nature Materials, 15(2), 217–226.

    Article  CAS  Google Scholar 

  18. Jiang, M., Zhang, L. J., Wang, F. Q., Zhang, J., Liu, G. S., Gao, B., & Wei, D. Z. (2017). Novel application of magnetic protein: Convenient one-step purification and immobilization of proteins. Scientific Reports, 7, 13329.

    Article  CAS  Google Scholar 

  19. Wang, L., Xu, H. X., Liu, Z. W., Sun, T. L., Yuan, C. Q., Yang, Y., Guo, J. H., & Xie, H. (2018). Magnetic immobilization of a quorum sensing signal hydrolase. AiiA. Microbiology Open, 3, 797–804.

    Google Scholar 

  20. Hu, X., Wang, Y., Zhang, L., Xu, M., Zhang, J., & Dong, W. (2017). Design of a pH-sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe3O4 at SiO2 nanoparticles as drug carrier. International Journal of Biological Macromolecules, 10, 43–53.

    Google Scholar 

  21. Vinoj, G., Pati, R., Sonawane, A., & Vaseeharana, B. (2015). In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus specie. Antimicrobial Agents and Chemotherapy, 59, 763–771.

    Article  CAS  Google Scholar 

  22. Dobrynina, O. Y., Bolshakova, T. N., Umyarov, A. M., Boksha, I. S., Lavrova, N. V., Grishin, A. V., Lyashchuk, A. M., Galushkina, Z. M., Avetisian, L. R., Chernukha, M. Y., Shaginian, I. A., Lunin, V. G., & Karyagina, A. S. (2015). (2015) Disruption of bacterial biofilms using recombinant Dispersin B. Microbiology, 84, 498–501.

    Article  CAS  Google Scholar 

  23. Wagner, S., Klepsch, M. M., Schlegel, S., Appel, A., Draheim, R., Tarry, M., Högbom, M., van Wijk, K. J., Slotboom, D. J., Persson, J. O., & de Gier, J. W. (2008). Tuning Escherichia coli for membrane protein overexpression. Proceedings of the Natural Academy of Sciences of USA, 105, 14371–14376.

    Article  Google Scholar 

  24. Grandes-Blanco, A., Tlecuitl-Beristain, S., Díaz, R., Sánchez, C., Téllez-Téllez, M., Márquez-Domínguez, L., Santos-López, G., & Diaz-Godinez, G. (2017). Heterologous expression of laccase (LACP83) of Pleurotus ostreatus. BioResources, 12, 3211–3221.

    Article  CAS  Google Scholar 

  25. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22, 1399–1408.

    Article  CAS  Google Scholar 

  26. Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353, 2885–2904.

    Article  CAS  Google Scholar 

  27. Datta, S., Christena, L.R., Rajaram, Y.R.S. (2013) Enzyme immobilization: An overview on techniques and support materials. 3 BIOTECH, 3(1), 1–9.

  28. Bes, M. T., Gomez-Moreno, C., Guisan, J. M., & Fernandez-Lafuente, R. (1995). Selective oxidation: Stabilisation by multipoint attachment of ferredoxin NADP+ reductase, an interesting cofactor recycling enzyme. Journal of Molecular Catalysis A-chemical, 98, 161–169.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (31771032, 51911530153) and the Fundamental Research Funds for the Central Universities (WHUT 2019IB005, WHUT 2019-HS-A1-03).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hao Xie, Junhui Guo; Methodology: Zewen Liu, Zisong Zhao; Formal analysis and investigation: Hao Xie, Junhui Guo, Zewen Liu, Zisong Zhao; Writing — original draft preparation: Zewen Liu, Zisong Zhao; Writing — review and editing: Hao Xie, Junhui Guo; Funding acquisition: Hao Xie; Resources: Kai Zeng, Yue Xia, Weihua Xu, Ruoyu Wang; Supervision: Hao Xie, Junhui Guo.

Corresponding authors

Correspondence to Junhui Guo or Hao Xie.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zewen Liu and Zisong Zhao contribute equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhao, Z., Zeng, K. et al. Functional Immobilization of a Biofilm-Releasing Glycoside Hydrolase Dispersin B on Magnetic Nanoparticles. Appl Biochem Biotechnol 194, 737–747 (2022). https://doi.org/10.1007/s12010-021-03673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03673-y

Keywords

Navigation