Abstract
Mango (Himsagar cultivar) is a high moisture-bearing seasonal fruit and cultivated in a wide range of the world. Mango pulp is generally preserved by sun drying. In recent days, industries are using hot-air oven, freeze, and microwave drying for mango leather (dried mango pulp in the sheet like texture) processing. Here, all these four drying methods were studied to determine the effect of drying on mango leather processing. RP-HPLC and FTIR were studied for analysis of polyphenol profile and predominant functional groups in raw and processed samples. The phytochemical analysis and medicinal properties (antioxidant, anti-diabetic, and anti-inflammatory activity) of all five mango samples were studied. The bioinformatics approach was studied to evaluate the bioactive potential of the phytochemicals derived from the samples. Freeze-dried mango leather was found to be the highest in DPPH (74.23%) and Superoxide (66.04%) activity, though raw mango pulp was observed with the highest H2O2 activity (73.24%). Gallic acid was the predominant phenolic acid present in all five samples and it was maximum in the case of freeze-dried sample (2.76 ± 0.04 mg/100 g MD). On the other hand, quercetin was the predominant flavonoid, it was found maximum for freeze-dried sample (3.93 ± 0.21 mg/100 g MD).
This is a preview of subscription content, access via your institution.





Data Availability
All relevant data are within the paper.
Code Availability
Not applicable.
References
Sarkar, T., & Chakraborty, R. (2018). Formulation, physicochemical analysis, sustainable packaging-storage provision, environment friendly drying techniques and energy consumption characteristics of mango leather production: A review. Asian Journal of Water, Environment and Pollution, 15, 79–92. https://doi.org/10.3233/AJW-180046
Ibrahim, N. A., El-Sakhawy, F. S., Mohammed, M. M. D., Farid, M. A., Abdel-Wahed, N. A. M., & Deabes, D. A. H. (2015). Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. Journal of Applied Pharmaceutical Science, 5, 1–005. https://doi.org/10.7324/JAPS.2015.50201
González-Romero, J., Arranz-Arranz, S., Verardo, V., García-Villanova, B., & Guerra-Hernández, E. J. (2020). Bioactive Compounds and Antioxidant Capacity of Moringa Leaves Grown in Spain Versus 28 Leaves Commonly Consumed in Pre-Packaged Salads. Processes, 8, 1297. https://doi.org/10.3390/pr8101297
Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 2017, 378–386.
Sarkar, T., Salauddin, M., Choudhury, T., Um, J. S., Pati, S., Hazra, S. K., & Chakraborty, R. (2021). Spatial optimisation of mango leather production and colour estimation through conventional and novel digital image analysis technique. Spatial Information Research, 29(4), 439–453. https://doi.org/10.1007/s41324-020-00377-z
FitzGerald, R. J., Cermeño, M., Khalesi, M., Kleekayai, T., & Amigo-Benavent, M. (2020). Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods, 64, 103636. https://doi.org/10.1016/j.jff.2019.103636
Amigo, L., Martínez-Maqueda, D., & Hernández-Ledesma, B. (2020). In silico and In vitro analysis of multifunctionality of animal food-derived peptides. Foods, 9(8), 991. https://doi.org/10.3390/foods9080991
Sarkar, T., Nayak, P., & Chakraborty, R. (2020). Storage study of mango leather in sustainable packaging condition. Materials Today: Proceedings, 22, 2001–2007. https://doi.org/10.1016/j.matpr.2020.03.177
Sarkar, T., Salauddin, M., Hazra, S., Choudhury, T., & Chakraborty, R. (2021). Comparative approach of artificial neural network and thin layer modelling for drying kinetics and optimization of rehydration ratio for bael (Aegle marmelos (L) correa) powder production. Economic Computation and Economic Cybernetics Studies and Research, 55, 167–184. https://doi.org/10.24818/18423264/55.1.21.11
Hazra, S. K., Sarkar, T., Salauddin, M., Sheikh, H. I., Pati, S., & Chakraborty, R. (2020). Characterization of phytochemicals, minerals and in vitro medicinal activities of bael (Aegle marmelos L.) pulp and differently dried edible leathers. Heliyon, 6, e05382. https://doi.org/10.1016/j.heliyon.2020.e05382
Gul, R., Jan, S.U., Faridullah, S., Sherani, S., Jahan, N. (2017). Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. The Scientific World Journal, 2017. https://doi.org/10.1155/2017/5873648.
Joshi, B., Prasad Sah, G., Bahadur Basnet, B., Raj Bhatt, M., Sharma, D., Subedi, K., Pandey, J., & Malla, R. (2011). Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). Journal of Microbiology and Antimicrobials, 3, 1–7.
Auwal, M. S., Saka, S., Mairiga, I. A., Sanda, K. A., Shuaibu, A., & Ibrahim, A. (2014). Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinary Research Forum: an International Quarterly Journal, 5, 95–100.
Ruvini, L., Dissanayaka, W., Chathuni, J., Rizliya, V., & Swarna, W. (2017). Effect of Different Drying Methods on Antioxidant Activity of Star Fruits (Averrhoa Carambola L.). Journal of Nutrition and Diet Supplements, 1, 1–6.
Kamiloglu, S., Demirci, M., Selen, S., Toydemir, G., Boyacioglu, D., & Capanoglu, E. (2014). Home processing of tomatoes (Solanum lycopersicum): Effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. Journal of the Science of Food and Agriculture, 94, 2225–2233. https://doi.org/10.1002/jsfa.6546
Kasote, D. M., Jayaprakasha, G. K., & Patil, B. S. (1884). Leaf Disc Assays for Rapid Measurement of Antioxidant Activity. Science and Reports, 2019, 9. https://doi.org/10.1038/s41598-018-38036-x
Prathapan, A., Krishna, M. S., Nisha, V. M., Sundaresan, A., & Raghu, K. G. (2012). Polyphenol rich fruit pulp of Aegle marmelos (L.) Correa exhibits nutraceutical properties to down regulate diabetic complications — An in vitro study. Food Research International, 48, 690–695. https://doi.org/10.1016/j.foodres.2012.06.008
Faller, A. L. K., Fialho, E., & Liu, R. H. (2012). Cellular antioxidant activity of feijoada whole meal coupled with an in vitro digestion. Journal of Agriculture and Food Chemistry, 60, 4826–4832. https://doi.org/10.1021/jf300602w
Pavan, V., Sancho, R. A. S., & Pastore, G. M. (2014). The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii). LWT- Food Science and Technology, 59, 1247–1251. https://doi.org/10.1016/j.lwt.2014.05.040
Chandra, S., Chatterjee, P., Dey, P., & Bhattacharya, S. (2012). Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pacific Journal of Tropical Biomedicine, 2, S178–S180. https://doi.org/10.1016/S2221-1691(12)60154-3
Sakat, S. S., Juvekar, A. R., & Gambhire, M. N. (2010). In-vitro antioxidant and anti inflammatory activity of methanol extract of oxalis corniculata linn. International Journal of Pharmacy and Pharmaceutical Sciences, 2, 146–155.
Abirami, A., Nagarani, G., & Siddhuraju, P. (2014). In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Science and Human Wellness, 3, 16–25. https://doi.org/10.1016/j.fshw.2014.02.001
AOAC. (2019). AOAC International, Official Methods of Analysis, 21st edn. Arlington, Va, USA.
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
Pires, D. E., Blundell, T., & Ascher, D. (2015). pkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures. Journal of Medicinal Chemistry, 58, 4066–4072.
Gu, L., Lu, J., Li, Q., Wu, N., Zhang, L., Li, H., Xing, W., & Zhang, X. (2020). A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer’s disease and experimental validation. Journal of Ethnopharmacology, 251, 112488. https://doi.org/10.1016/j.jep.2019.112488
Mahomoodally, M. F., Picot-Allain, M. C. N., Zengin, G., Llorent-Martínez, E. J., Abdullah, H. H., Ak, G., Senkardes, I., Chiavaroli, A., Menghini, L., Recinella, L., et al. (2020). Phytochemical Analysis, Network Pharmacology and in Silico Investigations on Anacamptis pyramidalis Tuber Extracts. Molecules, 25, 2422. https://doi.org/10.3390/molecules25102422
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. https://doi.org/10.1101/gr.1239303
Roy, A. (2017). A Review on the Alkaloids an Important Therapeutic Compound from Plants. International Journal of Plant Biotechnology, 3, 1–9. https://doi.org/10.37628/IJPB.V3I2.199
Hussain, G., Rasul, A., Anwar, H., Aziz, N., Razzaq, A., Wei, W., Ali, M., Li, J., & Li, X. (2018). Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. International Journal of Biological Sciences, 14, 341–357. https://doi.org/10.7150/ijbs.23247
Singh, R., & Kumari, N. (2015). Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn. - A valuable medicinal tree. Industrial Crops and Products., 73, 1–8. https://doi.org/10.1016/j.indcrop.2015.04.012
Singh, B., & Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 5, 129–151. https://doi.org/10.1007/s13205-014-0220-2
Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26. https://doi.org/10.1016/j.abb.2018.06.001
Liang, N., & Kitts, D. D. (2014). Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules, 19, 19180–19208. https://doi.org/10.3390/molecules191119180
Shalaby, E., & Shanab, S. M. (2013). Antioxidant compounds, assays of determination and mode of action. African Journal of Pharmacy and Pharmacology, 7, 528–539. https://doi.org/10.5897/AJPP2013.3474
Li, L., Wang, S., Chen, J., Xie, J., Wu, H., Zhan, R., & Li, W. (2014). Major Antioxidants and In Vitro Antioxidant Capacity of Eleven Mango (Mangifera Indica L.) Cultivars. International Journal of Food Properties, 17, 1872–1887. https://doi.org/10.1080/10942912.2012.687798
İzli, G. (2017). Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods. Food Science and Technology, 37, 139–147. https://doi.org/10.1590/1678-457X.14516
Ramírez-Rivera, E. de J., Ramón-Canul, L. G., Díaz-Rivera, P., Juárez-Barrientos, J. M., Herman-Lara, E., Prinyawiwatkul, W., & Herrera-Corredor, J. A. (2017). Sensory profiles of artisan goat cheeses as influenced by the cultural context and the type of panel. International Journal of Food Science & Technology, 52, 1789–1800. https://doi.org/10.1111/ijfs.13452
Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12, 1174. https://doi.org/10.1186/1472-6882-12-221
Sarkar, T., Saha, S., Saluddin, M., & Chakraborty, R. (2021). Drying Kinetics, Fourier-Transform Infrared Spectroscopy Analysis and Sensory Evaluation of Sun, Hot-Air, Microwave and Freeze Dried Mango Leather. Journal of Microbiology, Biotechnology and Food Sciences, 10, 1–7.
Izli, N., Izli, G., & Taskin, O. (2017). Influence of different drying techniques on drying parameters of mango. Food Science and Technology, 37, 604–612. https://doi.org/10.1590/1678-457x.28316
Annegowda, H. V., Bhat, R., Yeong, K. J., Liong, M.-T., Karim, A. A., & Mansor, S. M. (2014). Influence of Drying Treatments on Polyphenolic Contents and Antioxidant Properties of Raw and Ripe Papaya (Carica papaya L.). International Journal of Food Properties, 17, 283–292. https://doi.org/10.1080/10942912.2011.631248
Ribeiro, R., Machado, S., Queiroz, J. H., Lopes Ribeiro de Queiroz, M. E., Campos, F. M., & Pinheiro Sant’ Ana, H. M. (2007). Antioxidant in Mango (Mangifera indica L.) Pulp. Plant Foods for Human Nutrition, 62, 13–17. https://doi.org/10.1007/s11130-006-0035-3
Saini, R. K., Shetty, N. P., Prakash, M., & Giridhar, P. (2014). Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. Journal of Food Science and Technology, 51, 2176–2182. https://doi.org/10.1007/s13197-014-1264-3
İncedayi, B., Tamer, C. E., Sinir, G. Ö., Suna, S., & Çopur, Ö. U. (2016). Impact of different drying parameters on color, β-carotene, antioxidant activity and minerals of apricot (Prunus armeniaca L.). Food Science and Technology, 36, 171–178. https://doi.org/10.1590/1678-457X.0086
de Ancos, B., Sánchez-Moreno, C., Zacarías, L., Rodrigo, M. J., Sáyago Ayerdí, S., Blancas Benítez, F. J., Domínguez Avila, J. A., & González-Aguilar, G. A. (2018). Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. Journal of Food Measurement and Characterization, 12, 2145–2157. https://doi.org/10.1007/s11694-018-9830-4
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30, 11–26. https://doi.org/10.1007/s12291-014-0446-0
Miękus, N., Iqbal, A., Marszałek, K., Puchalski, C., & Świergiel, A. (2019). Green Chemistry Extractions of Carotenoids from Daucus carota L.-Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules, 24, 4339. https://doi.org/10.3390/molecules24234339
Hunter, K. J., & Fletcher, J. M. (2002). The antioxidant activity and composition of fresh, frozen, jarred and canned vegetables. Innovative Food Science and Emerging Technologies, 3, 399–406.
Robles-Sánchez, R. M., Islas-Osuna, M. A., Astiazarán-García, H., Vázquez-Ortiz, F. A., Martín-Belloso, O., Gorinstein, S., & González-Aguilar, G. A. (2009). Quality Index, Consumer Acceptability, Bioactive Compounds, and Antioxidant Activity of Fresh-Cut “Ataulfo” Mangoes (Mangifera Indica L.) as Affected by Low-Temperature Storage. Journal of Food Science, 74, S126–S134. https://doi.org/10.1111/j.1750-3841.2009.01104.x
Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Dek, M. S. P., & Hairuddin, M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12, 4678–4692. https://doi.org/10.3390/ijms12074678
Ling, L. T., Yap, S. A., Radhakrishnan, A. K., Subramaniam, T., Cheng, H. M., & Palanisamy, U. D. (2009). Standardised Mangifera indica extract is an ideal antioxidant. Food Chemistry, 113, 1154–1159. https://doi.org/10.1016/j.foodchem.2008.09.004
Das, S., Alam, M. D. N., Batuta, S., Roy, N., & Begum, N. A. (2015). Exploring Comparative Antioxidant Activity of Some Popular Cultivars of Mangifera indica L., National Fruit of India. International Journal of Fruit Science, 15, 129–147. https://doi.org/10.1080/15538362.2014.954509
Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5, e03044. https://doi.org/10.1016/j.heliyon.2019.e03044
Piskov, S., Timchenko, L., Grimm, W. D., Rzhepakovsky, I., Avanesyan, S., Sizonenko, M., & Kurchenko, V. (2020). Effects of various drying methods on some physico-chemical properties and the antioxidant profile and ACE inhibition activity of oyster mushrooms (Pleurotus ostreatus). Foods, 9, 160. https://doi.org/10.3390/foods9020160
Cheng, K., Dong, W., Long, Y., Zhao, J., Hu, R., Zhang, Y., & Zhu, K. (2019). Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans. Food Science & Nutrition, 7, 1084–1095. https://doi.org/10.1002/fsn3.948
Dziki, D., Gawlik-Dziki, U., Pecio, Ł, Różyło, R., Świeca, M., Krzykowski, A., & Rudy, S. (2015). Ground green coffee beans as a functional food supplement – Preliminary study. LWT- Food Science and Technology, 63, 691–699. https://doi.org/10.1016/j.lwt.2015.03.076
Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128, 14–21. https://doi.org/10.1016/j.foodchem.2011.02.052
Correa-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., & Paliyath, G. (2014). Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 165, 522–531. https://doi.org/10.1016/j.foodchem.2014.05.135
Meyer, J. H. (1980). Gastric emptying of ordinary food: Effect of antrum on particle size. American Journal of Physiology, 239, G133–G135. https://doi.org/10.1152/ajpgi.1980.239.3.G133
Su, D., Li, N., Chen, M., Yuan, Y., He, S., Wang, Y., Wu, Q., Li, L., Yang, H., & Zeng, Q. (2018). Effects of in vitro digestion on the composition of flavonoids and antioxidant activities of the lotus leaf at different growth stages. International Journal of Food Science & Technology, 53, 1631–1639. https://doi.org/10.1111/ijfs.13746
Wootton-Beard, P. C., Moran, A., & Ryan, L. (2011). Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Research International, 44, 217–224. https://doi.org/10.1016/j.foodres.2010.10.033
Pérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Journal of Agriculture and Food Chemistry, 50, 2308–2312. https://doi.org/10.1021/jf0113833
Fazzari, M., Fukumoto, L., Mazza, G., Livrea, M. A., Tesoriere, L., & Di, Marco L. (2008). In Vitro Bioavailability of Phenolic Compounds from Five Cultivars of Frozen Sweet Cherries (Prunus avium L.). Journal of Agricultural and Food Chemistry, 56, 3561–3568. https://doi.org/10.1021/jf073506a
Liu, C., He, W., Chen, S., Chen, J., Zeng, M., Qin, F., & He, Z. (2017). Interactions of digestive enzymes and milk proteins with tea catechins at gastric and intestinal pH. International Journal of Food Science & Technology, 52, 247–257. https://doi.org/10.1111/ijfs.13276
Scrob, T., Hosu, A., & Cimpoiu, C. (2019). The Influence of in Vitro Gastrointestinal Digestion of Brassica oleracea Florets on the Antioxidant Activity and Chlorophyll, Carotenoid and Phenolic Content. Antioxidants (Basel, Switzerland), 8, 212. https://doi.org/10.3390/antiox8070212
Courraud, J., Berger, J., Cristol, J.-P., & Avallone, S. (2013). Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chemistry, 136, 871–877. https://doi.org/10.1016/j.foodchem.2012.08.076
Reboul, E., Richelle, M., Perrot, E., Desmoulins-Malezet, C., Pirisi, V., & Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. Journal of Agriculture and Food Chemistry, 54, 8749–8755. https://doi.org/10.1021/jf061818s
Chiang, C.-J., Kadouh, H., & Zhou, K. (2013). Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. LWT- Food Science and Technology, 51, 417–422. https://doi.org/10.1016/j.lwt.2012.11.014
Liang, L., Wu, X., Zhao, T., Zhao, J., Li, F., Zou, Y., Mao, G., & Yang, L. (2012). In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Research International, 46, 76–82. https://doi.org/10.1016/j.foodres.2011.11.024
Kamiloglu, S., Pasli, A. A., Ozcelik, B., & Capanoglu, E. (2014). Evaluating the in vitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT- Food Science and Technology, 56, 284–289. https://doi.org/10.1016/j.lwt.2013.11.040
Mustafa, I., Chin, N. L., Fakurazi, S., & Palanisamy, A. (2019). Comparison of phytochemicals, antioxidant and anti-inflammatory properties of sun-, oven- And freeze-dried ginger extracts. Foods, 8, 456. https://doi.org/10.3390/foods8100456
Chou, C. T. (1997). The antiinflammatory effect of an extract of Tripterygium wilfordii Hook F on adjuvant-induced paw oedema in rats and inflammatory mediators release. Phytotherapy Research, 11, 152–154. https://doi.org/10.1002/(SICI)1099-1573(199703)11:2<152::AID-PTR45>3.0.CO;2-L
Kuganesan, A., Thiripuranathar, G., Navaratne, A. N., & Paranagama, P. A. (2017). Antioxidant and Anti-Inflammatory Activities of Peels, Pulps and Seed Kernels of Three Common Mango (Mangifera Indical L.) Varieties in Sri Lanka. International Journal of Pharmaceutical Sciences and Research, 8, 70–78. https://doi.org/10.13040/IJPSR.0975-8232.8(1).70-78
Sekar, V., Chakraborty, S., Mani, S., Sali, V. K., & Vasanthi, H. R. (2019). Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. South African Journal of Botany, 120, 129–134. https://doi.org/10.1016/j.sajb.2018.02.001
Zhu, Y., Dong, Y., Qian, X., Cui, F., Guo, Q., Zhou, X., Wang, Y., Zhang, Y., & Xiong, Z. (2012). Effect of superfine grinding on antidiabetic activity of bitter melon powder. International Journal of Molecular Sciences, 13, 14203–14218. https://doi.org/10.3390/ijms131114203
Zainol, M. K. M., Abdul-Hamid, A., Bakar, F. A., & Dek, S. P. (2009). Effect of different drying methods on the degradation of selected flavonoids in Centella asiatica. International Food Research Journal, 16, 531–537.
Çoklar, H., & Akbulut, M. (2017). Effect of Sun, Oven and Freeze-Drying on Anthocyanins, Phenolic Compounds and Antioxidant Activity of Black Grape (Ekşikara) (Vitis vinifera L.). South African Journal of Enology and Viticulture, 38, 264–272.
Vijayalakshmi, R., & Ravindhran, R. (2012). Comparative fingerprint and extraction yield of Diospyrus ferrea (willd.) Bakh. root with phenol compounds (gallic acid), as determined by uv–vis and ft–ir spectroscopy. Asian Pacific Journal of Tropical Biomedicine., 2, S1367–S1371. https://doi.org/10.1016/S2221-1691(12)60418-3
Zhu, J., Sun, X., Wang, S., Xu, Y., & Wang, D. (2017). Formation of nanocomplexes comprising whey proteins and fucoxanthin: Characterization, spectroscopic analysis, and molecular docking. Food Hydrocoll., 63, 391–403. https://doi.org/10.1016/j.foodhyd.2016.09.027
Yun, J. W. (2010). Possible anti-obesity therapeutics from nature–a review. Phytochemistry, 71, 1625–1641. https://doi.org/10.1016/j.phytochem.2010.07.011
Sales, P. M., Souza, P. M., Simeoni, L. A., & Silveira, D. (2012). α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques, 15, 141–183. https://doi.org/10.18433/j35s3k
Baker, D. J., Timmons, J. A., & Greenhaff, P. L. (2005). Glycogen phosphorylase inhibition in type 2 diabetes therapy: A systematic evaluation of metabolic and functional effects in rat skeletal muscle. Diabetes, 54, 2453–2459. https://doi.org/10.2337/diabetes.54.8.2453
Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N., et al. (2006). Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care, 29, 1538–1544. https://doi.org/10.2337/dc05-2370
Acknowledgements
We would like to thank Dr. Ramdhan Majhi (MDLC facility, Indian Institute of Chemical Biology, Kolkata, India) for his continuous support and guidance in HPLC analysis.
Author information
Authors and Affiliations
Contributions
T.S and R.C conceived and designed the experiments; T.S and M.S performed the experiments; T.S, K.K.B analyzed the data; R.C resources, T.S, M.S, K.K.B, writing—original draft preparation, M.S formatting, editing according journal guidelines, T.S, M.S, K.K.B, S.P, writing—review and editing. All authors have read and agreed to the published version of the manuscript.
Corresponding authors
Ethics declarations
Ethics Approval
Not applicable.
Consent to Participate
The authors have agreed to participate in the publication of the paper.
Consent for Publication
All authors have agreed to publish the paper.
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sarkar, T., Bharadwaj, K.K., Salauddin, M. et al. Phytochemical Characterization, Antioxidant, Anti-inflammatory, Anti-diabetic properties, Molecular Docking, Pharmacokinetic Profiling, and Network Pharmacology Analysis of the Major Phytoconstituents of Raw and Differently Dried Mangifera indica (Himsagar cultivar): an In Vitro and In Silico Investigations. Appl Biochem Biotechnol 194, 950–987 (2022). https://doi.org/10.1007/s12010-021-03669-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-021-03669-8
Keywords
- Drying
- Phytochemicals
- Bioinformatics
- Medicinal property
- Multivariate analysis