Wang, C., & Wang, M. (2014). Electrospun multifunctional tissue engineering scaffolds. Frontiers of Materials Science, 8(1), 3–19.
CAS
Article
Google Scholar
Zhang, J. G., & Xiumei, M. O. (2013). Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Frontiers of Materials Science, 7(2), 129–142.
CAS
Article
Google Scholar
Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., & Yin, H. L. (2014). Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39(5), 862–890.
CAS
Article
Google Scholar
Zhao, J., Ho, K. K. C., Shamsuddin, S. R., Bismarck, A., & Dutschk, V. (2012). A comparative study of fibre/matrix interface in glass fibre reinforced polyvinylidene fluoride composites. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 413, 58–64.
CAS
Article
Google Scholar
Chen, D. W., Liao, J. Y., Liu, S. J., & Chan, E. C. (2012). Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: An in vitro and in vivo study. International Journal of Nanomedicine, 7, 763–771.
CAS
PubMed
PubMed Central
Google Scholar
Li, W., Li, X., Chen, Y., Li, X., Deng, H., Wang, T., Huang, R., & Fan, G. (2013). Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydrate Polymers, 92(2), 2232–2238.
CAS
Article
Google Scholar
Li, J., Hu, Y., He, T., Huang, M., Zhang, X., Yuan, J., Wei, Y., Dong, X., Liu, W., Ko, F., & Zhou, W. (2018). Electrospun sandwich-structure composite membranes for wound dressing scaffolds with high antioxidant and antibacterial activity. Macromolecular Materials and Engineering, 303, 1700270.
Article
Google Scholar
Li, X., Cheng, R., Sun, Z., Su, W., Pan, G., Zhao, S., Zhao, J., & Cui, W. (2017). Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomaterialia, 61, 204–216.
CAS
Article
Google Scholar
Rieger, K. A., Birch, N. P., & Schiffman, J. D. (2013). Designing electrospun nanofiber mats to promote wound healing-a review. Journal of Materials Chemistry B, 1(36), 4531–4541.
CAS
Article
Google Scholar
Unnithan, A. R., Barakat, N., Pichiah, P. T., Gnanasekaran, G., Nirmala, R., Cha, Y. S., Jung, C. H., Mohamed, E., & Kim, H. Y. (2012). Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCL. Carbohydrate Polymers, 90(4), 1786–1793.
CAS
Article
Google Scholar
Safdari, M., Shakiba, E., Kiaie, S. H., & Fattahi, A. (2016). Preparation and characterization of ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing. Fibers & Polymers, 17(5), 744–750.
CAS
Article
Google Scholar
Khamforoush, M., Pirouzram, O., & Hatami, T. (2015). The evaluation of thin film composite membrane composed of an electrospun polyacrylonitrile nanofibrous mid-layer for separating oil–water mixture. Desalination, 359, 14–21.
CAS
Article
Google Scholar
Cui, J., Qiu, L., Qiu, Y., Wang, Q., & Wei, Q. (2015). Co-electrospun nanofibers of pva-sbq and zein for wound healing. Journal of Applied Polymer Science, 132(39).
Zhao, R., Li, X., Sun, B., Tong, Y., Jiang, Z., & Wang, C. (2015). Nitrofurazone-loaded electrospun PLLA/sericin-based dual-layer fiber mats for wound dressing applications. RSC Advances, 5, 16940–16949.
CAS
Article
Google Scholar
Miguel, S., Simões, D., Moreira, A., Sequeira, R., & Correia, I. (2019). Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. International Journal of Biological Macromolecules, 121, 524–535.
CAS
Article
Google Scholar
Aragón, J., Costa, C., Coelhoso, I., Mendoza, G., Aguiar-Ricardo, A., & Irusta, S. (2019). Electrospun asymmetric membranes for wound dressing applications. Materials Science and Engineering: C, 103, 109822.
Article
Google Scholar
Li, X., Wang, C., Yang, S., Liu, P., & Zhang, B. (2018). Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. International journal of nanomedicine, 13, 5287.
CAS
Article
Google Scholar
Iljin, K., Ketola, K., Vainio, P., Halonen, P., Kohonen, P., Fey, V., Grafström, R. C., Perälä, M., & Kallioniemi, O. (2009). High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clinical Cancer Research, 15(19), 6070–6078.
CAS
Article
Google Scholar
Thakare, R., Shukla, M., Kaul, G., Dasgupta, A., & Chopra, S. (2019). Repurposing disulfiram for treatment of staphylococcus aureus infections. International Journal of Antimicrobial Agents, 53(6), 709–715.
CAS
Article
Google Scholar
Horita, Y., Takii, T., Yagi, T., Ogawa, K., Fujiwara, N., Inagaki, E., Kremer, L., Sato, Y., Kuroishi, R., Lee, Y., Makino, T., Mizukami, H., Hasegawa, T., Yamamoto, R., & Onozaki, K. (2012). Antitubercular activity of disulfiram, an antialcoholism drug, against multidrug-and extensively drug-resistant Mycobacterium tuberculosis isolates. Antimicrobial Agents and Chemotherapy, 56(8), 4140–4145.
CAS
Article
Google Scholar
Long, & Timothy, E. (2017). Repurposing thiram and disulfiram as antibacterial agents for multidrug-resistant staphylococcus aureus infections. Antimicrobial Agents & Chemotherapy, 61(9).
Xie, C., Ding, R., Wang, X., Hu, C., Yan, J., Zhang, W., Wang, Y., Qu, Y., Zhang, S., He, P., & Wang, Z. (2020). A disulfiram-loaded electrospun poly(vinylidene fluoride) nanofibrous scaffold for cancer treatment. Nanotechnology, 31(11).
Zhuo, X., Lei, T., Miao, L., Chu, W., Li, X., Luo, L., Gou, J., Zhang, Y., Yin, T., He, H., & Tang, X. (2018). Disulfiram-loaded mixed nanoparticles with high drug-loading and plasma stability by reducing the core crystallinity for intravenous delivery. Journal of Colloid & Interface Science, 529, 34–43.
CAS
Article
Google Scholar
Fasehee, H., Zarrinrad, G., Tavangar, S., Ghaffari, S., & Faghihi, S. (2016). The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes. Materials Science & Engineering: C, 63(1), 587–595.
CAS
Article
Google Scholar
Song, W., Tang, Z., Lei, T., Wen, X., Wang, G., Zhang, D., Deng, M., Tang, X., & Chen, X. (2016). Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine, 12(2), 377–386.
CAS
Article
Google Scholar
Graa, M., Melo-Diogo, D. D., Correia, I., & Moreira, A. (2021). Electrospun asymmetric membranes as promising wound dressings: A review. Pharmaceutics, 13(2), 183.
Article
Google Scholar
Antunes, B., Moreira, A., Gaspar, V., & Correia, I. (2015). Chitosan/arginine-chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydrate Polymers, 130(5), 104–112.
CAS
Article
Google Scholar
Chanda, A., Adhikari, J., Ghosh, A., Chowdhury, S., Thomas, S., Datta, P., & Saha, P. (2018). Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. International Journal of Biological Macromolecules, 116, 774–785.
CAS
Article
Google Scholar
Atala, A., Lanza, R., Thomson, J., & Nerem, R. (2011). Principles of regenerative medicine. Academic Press.
Google Scholar
Abbrent, S., Plestil, J., Hlavata, D., Lindgren, J., Tegenfeldt, J., & Wendsj. . (2001). Crystallinity and morphology of pvdf-hfp-based gel electrolytes. Polymer, 42(4), 1407–1416.
CAS
Article
Google Scholar
Scaffaro, R., Lopresti, F., Sutera, A., Botta, L., Fontana, R. M., & Gallo, G. (2017). Plasma modified PLA electrospun membranes for actinorhodin production intensification in streptomyces coelicolor immobilized-cell cultivations. Colloids and Surfaces B: Biointerfaces, 157, 233–241.
CAS
Article
Google Scholar