Skip to main content
Log in

In Situ Calb Enzyme Immobilization in Mesoporous Material Type MCM-48 Synthesis Using Ionic Solid [C14MI]Cl as Structure-Directing Agent

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

MCM-48 mesoporous support was synthesized with the ionic solid 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent for in situ immobilization of Candida antarctica B (CALB). The MCM-48[C14MI]Cl support showed characteristics of mesoporous material of interest, with a pore size of 20.30 and 73.41 A for the support without and with the enzyme, respectively. The elongation of the carbonic chain of the ionic solid directly influenced the increase in the specific area and pore volume of the material. In addition, the decrease in the specific area and pore volume for support with the enzyme showed the effectiveness of immobilization in situ. It was possible to obtain the ideal levels for the best activities of esterification of the enzyme with optimization of a mathematical model. The optimized variables were 0.31 g of enzyme and 3.35% of ionic solid with a maximum esterification activity of 392.92 U/g and 688% of yield. The support showed residual activity above 50% when stored under refrigeration for 75 days. At 60 and 80 °C, the enzyme immobilized on the support retained more than 80 and 40% of its residual activity, respectively. In addition, the support presented the possibility of reuse for up to 10 cycles with residual activity of approximately 50%. The support synthesized in the present study presents a great industrial opportunity for the immobilization and use of the CALB enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chu, K. D. S. C. T., Sheppard, D. H. O. E. W., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. American chemical Society, 114(14), 10834–10843. https://doi.org/10.1021/ja00053a020

    Article  Google Scholar 

  2. Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie - International Edition, 45(20), 3216–3251. https://doi.org/10.1002/anie.200503075

    Article  PubMed  CAS  Google Scholar 

  3. Sachse, A., Wuttke, C., Díaz, U., & De Souza, M. O. (2015). Mesoporous y zeolite through ionic liquid based surfactant templating. Microporous and Mesoporous Materials, 217, 81–86. https://doi.org/10.1016/j.micromeso.2015.05.049

    Article  CAS  Google Scholar 

  4. Battiston, C. S. Z. ., Ficanha, A. M. M., Levandoski, K. L. D., da Silva, B. A., Battiston, S., Dallago, R. M., & Mignoni, M. L. (2017). Immobilization of lipase on mesoporous molecular sieve MCM-48 obtained using ionic solid as a structure director and esterification reaction on solvent-free. Química Nova, 40(3), 293–298. https://doi.org/10.21577/0100-4042.20170011

  5. Itoh, T. (2017). Ionic liquids as tool to improve enzymatic organic synthesis. Chemical Reviews, 117(15), 10567–10607. https://doi.org/10.1021/acs.chemrev.7b00158

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, K., Yuan, E. H., Xu, L. L., Xue, Q. S., Luo, C., Albela, B., & Bonneviot, L. (2012). Preparation of high-quality MCM-48 mesoporous silica and the mode of action of the template. European Journal of Inorganic Chemistry, 26, 4183–4189. https://doi.org/10.1002/ejic.201200316

    Article  CAS  Google Scholar 

  7. Bordin, I., de Aguiar Pedott, V., Demaman Oro, C. E., Junges, A., Dallago, R. M., & Mignoni, M. L. (2021). Nb-MCM-type mesoporous material synthesis using ionic solid as structure-directing agent for in situ lipase immobilization. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-020-03484-7

    Article  PubMed  Google Scholar 

  8. Ficanha, A. M. M., Antunes, A., Oro, C. E. D., Dallago, R. M., & Mignoni, M. L. (2020). Immobilization of Candida antarctica B (CALB) in silica aerogel: Morphological characteristics and stability. Biointerface research in applied chemistry, 10(6), 6744–6756. https://doi.org/10.33263/BRIAC106.67446756

  9. Ficanha, A. M. M., Antunes, A., Oro, C. E. D., Franceschi, E., Dallago, R. M., & Mignoni, M. L. (2021). Immobilization of lipase CALB in organically modified silica. Biointerface research in applied chemistry, 11(1), 7814–7825. https://doi.org/10.33263/BRIAC111.78147825

  10. Scherer, G. C. R. S., Nyari, N. L. D., Hillesheim, E. L., Paulazzi, A. R., Da Silva, B. A., Zeni, J., & Mignoni, M. L. (2018). Pseudomonas fluorescens AK lipase immobilization on MCM-48-type mesoporous support in the presence of ionic liquid. Industrial Biotechnology, 14(4), 222–229. https://doi.org/10.1089/ind.2018.0015

    Article  CAS  Google Scholar 

  11. Mignoni, M. L. (2012). Zeólitas obtidas com líquidos iônicos como direcionadores de estrutura: síntese e reatividade. Universidade Federal do Rio Grande do Sul.

  12. Kumar, D., Schumacher, K., Fresne, Du., von Hohenesche, C., Grün, M., & Unger, K. K. (2001). MCM-41, MCM-48 and related mesoporous adsorbents: Their synthesis and characterisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 109–116. https://doi.org/10.1016/S0927-7757(01)00638-0

    Article  Google Scholar 

  13. Ficanha, A. M. M., Nyari, N. L. D., Levandoski, K., Mignoni, M. L., & Dallago, R. M. (2015). Study of immobilization of lipase in silica by the sol-gel technique. Quimica Nova, 38(3), 364–369. https://doi.org/10.5935/0100-4042.20150027

    Article  CAS  Google Scholar 

  14. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  15. Holbrey, J. D., & Seddon, K. R. (1999). The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. Journal of the Chemical Society, Dalton Transactions, 13, 2133–2139.

    Article  Google Scholar 

  16. Schwanke, A. J., & Pergher, S. B. (2012). Peneiras moleculares mesoporosas MCM-41: Uma perspectiva histórica, o papel de cada reagente na síntese e sua caracterização básica. Perspectiva, 36(135), 113–125.

    Google Scholar 

  17. Teixeira, V. G., Coutinho, F. M. B., & Gomes, A. S. (2001). Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. Quimica Nova, 24(6), 808–818. https://doi.org/10.1590/s0100-40422001000600019

    Article  Google Scholar 

  18. Nascimento, A. R., Figueredo, G. P., Rodrigues, G., Melo, M. A. F., Souza, M. J. B., & Melo, D. M. A. (2014). Síntese e caracterização de materiais mesoporosos modificados com níquel para a captura de CO2. Cerâmica, 60(356), 482–489. https://doi.org/10.1590/s0366-69132014000400005

    Article  Google Scholar 

  19. Kim, J. M., Kim, S. K., & Ryoo, R. (1998). Synthesis of MCM-48 single crystals. Chemical Communications, 1(2), 259–260. https://doi.org/10.1039/a707677k

    Article  Google Scholar 

  20. Han, Y., Zhou, X., & Zheng, L. (2019). Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy. Bioprocess and Biosystems Engineering, 42(11), 1739–1746. https://doi.org/10.1007/s00449-019-02170-1

    Article  PubMed  CAS  Google Scholar 

  21. Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479(August), 110607. https://doi.org/10.1016/j.mcat.2019.110607

    Article  CAS  Google Scholar 

  22. Grollmisch, A., Kragl, U., & Großeheilmann, J. (2018). Enzyme immobilization in polymerized ionic liquids-based hydrogels for active and reusable biocatalysts. SynOpen, 02(02), 0192–0199. https://doi.org/10.1055/s-0037-1610144

    Article  CAS  Google Scholar 

  23. Maury, S., Buisson, P., Perrard, A., & Pierre, A. C. (2005). Compared esterification kinetics of the lipase from Burkholderia cepacia either free or encapsulated in a silica aerogel. Journal of Molecular Catalysis B: Enzymatic, 32(5–6), 193–203. https://doi.org/10.1016/j.molcatb.2004.12.006

    Article  CAS  Google Scholar 

  24. Dhawane, S. H., Kumar, T., & Halder, G. (2018). Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Conversion and Management, 167(March), 176–202. https://doi.org/10.1016/j.enconman.2018.04.073

    Article  CAS  Google Scholar 

  25. Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., Bezerra, R. M., dos Santos, J. C. S., & Barros Gonçalves, L. R. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, 75, 99–120. https://doi.org/10.1016/j.procbio.2018.09.003

    Article  CAS  Google Scholar 

  26. Filho, D. G., Silva, A. G., & Guidini, C. Z. (2019). Lipases: Sources, immobilization methods, and industrial applications. Applied Microbiology and Biotechnology, 103(18), 7399–7423. https://doi.org/10.1007/s00253-019-10027-6

    Article  PubMed  CAS  Google Scholar 

  27. Sarno, M., Iuliano, M., Polichetti, M., & Ciambelli, P. (2017). High activity and selectivity immobilized lipase on Fe3O4 nanoparticles for banana flavour synthesis. Process Biochemistry, 56, 98–108. https://doi.org/10.1016/j.procbio.2017.02.004

    Article  CAS  Google Scholar 

  28. Xie, W., & Huang, M. (2018). Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management, 159(September 2017), 42–53. https://doi.org/10.1016/j.enconman.2018.01.021

  29. Guimarães, M., Pérez-Gregorio, M., Mateus, N., de Freitas, V., Galinha, C. F., Crespo, J. G., … Cruz, L. (2019). An efficient method for anthocyanins lipophilization based on enzyme retention in membrane systems. Food Chemistry, 300(July), 125167. https://doi.org/10.1016/j.foodchem.2019.125167

  30. de Macedo Robert, J., Garcia-Ortega, X., Montesinos-Seguí, J. L., Guimaraes Freire, D. M., & Valero, F. (2019). Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochemical Engineering Journal, 147(April), 39–47. https://doi.org/10.1016/j.bej.2019.03.027

    Article  CAS  Google Scholar 

  31. Nian, B., Cao, C., & Liu, Y. (2019). Activation and stabilization of Candida antarctica lipase B in choline chloride-glycerol-water binary system via tailoring the hydrogen-bonding interaction. International Journal of Biological Macromolecules, 136, 1086–1095. https://doi.org/10.1016/j.ijbiomac.2019.06.150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank URI Erechim, National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and Research Support Foundation of the State of Rio Grande do Sul (FAPERGS).

Funding

This work was financially supported by CAPES, FAPERGS, and CNPq.

Author information

Authors and Affiliations

Authors

Contributions

C.S.Z.B: Investigation and writing.

A.M.M. Ficanha: Investigation and writing.

C.E.D. Oro: Investigation and writing.

R.M. Dallago: Formal analysis, writing, review, and editing.

M.L. Mignoni: Supervision, formal analysis, writing, review, and editing.

Corresponding author

Correspondence to Marcelo Luis Mignoni.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors gave their consent to participate in the article (Marcelo L. Mignoni, on behalf of all co-authors).

Consent for Publication

All authors gave their consent for publication of the article if it was accepted. (Marcelo L. Mignoni, on behalf of all co-authors).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• MCM-48 was successfully synthesized using [C14MI]Cl, and CALB was immobilized.

• CALB immobilized in MCM-48 with [C14MI]Cl showed reuse for up to 10 cycles.

• The immobilization yield achieved was 688%.

• Enzymatic activity remained above 50% for 75 days under refrigeration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battiston, C.S.Z., Ficanha, A.M.M., Oro, C.E.D. et al. In Situ Calb Enzyme Immobilization in Mesoporous Material Type MCM-48 Synthesis Using Ionic Solid [C14MI]Cl as Structure-Directing Agent. Appl Biochem Biotechnol 194, 748–761 (2022). https://doi.org/10.1007/s12010-021-03648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03648-z

Keywords

Navigation