Skip to main content

Advertisement

Log in

Antibacterial and Anti-inflammatory Activity of Extracts and Major Constituents Derived from Stachytarpheta indica Linn. Leaves and Their Potential Implications for Wound Healing

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wounds of various types continue to have a severe socioeconomic impact on the cost of health care. Globally, there has been increased interest surrounding the identification of bioactive compounds that promote or modulate the wound healing process. Stachytarpheta indica Linn. is traditionally used to heal wounds and relieve inflammation; however, the theorised pharmacological properties have not yet been scientifically validated. In this study, dried and ground plant leaves were extracted with water and methanol, which were then subjected to various analyses. The antimicrobial activity of the plant extracts and isolated compounds was determined using well diffusion assays, while the minimum inhibitory concentrations were determined with a colorimetric assay. Morphological changes of human keratinocytes in response to plant extracts were observed with differential interference contrast microscope imaging. Cell viability, proliferation, and migratory effects post-treatment with the plant extracts were also evaluated via colorimetric cytotoxicity assays and a real-time cell analyser protocol. Anti-inflammatory effects of plant extracts and isolated compounds were evaluated by flow cytometry and cyclooxygenase and lipoxygenase enzyme inhibition assays. Three active compounds, i.e. ipolamiide, verbascoside and iso-verbascoside, were isolated from S. indica leaves. Verbascoside demonstrated broad-range antibacterial activity and imposed strong inhibition at 9.77 μg/mL against Staphylococci spp. S. indica extracts (0.1–0.2 mg/mL) were shown to improve human keratinocyte proliferation up to 60% and induce morphological changes by producing cytoplasmic projections at concentrations higher than 0.4 mg/mL. Plant extracts (6.25–100 μg/mL) and individual compounds (3.125–50 μg/mL) elicited strong anti-inflammatory effects by suppressing the expression of interleukin-8 and inhibiting cyclooxygenase-1 and 5-lipoxygenase enzymes. Collectively, these results indicate that plant extracts and isolated compounds derived from S. indica have the potential to inhibit bacterial growth, promote tissue regeneration and reduce inflammation, hence, potentially providing the basis for a novel therapeutic for the treatment of wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Maver, T., Maver, U., Kleinschek, K. S., Smrke, D. M., & Kreft, S. (2015). A review of herbal medicines in wound healing. International Journal of Dermatology, 54, 740–751.

    Article  PubMed  Google Scholar 

  2. Öztürk, F., Ermertcan, A. T., & İnanır, I. (2013). Hyperbaric oxygen therapy for the management of chronic wounds. Cutaneous and Ocular Toxicology, 32(1), 72–77.

    Article  PubMed  Google Scholar 

  3. Sen, C. K., Gordillo, G. M., Roy, S., Kirsner, R., Lambert, L., Hunt, T. K., Gottrup, F., Gurtner, G. C., & Longaker, M. T. (2009). Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair and Regeneration, 17(6), 763–771.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wiegand, C., Schönfelder, U., Abel, M., Ruth, P., Kaatz, M., & Hipler, U.-C. (2010). Protease and pro-inXammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Archives of Dermatological Research, 302, 419–428.

    Article  PubMed  CAS  Google Scholar 

  5. Choi, J., Park, Y.-G., Yun, M.-S., & Seol, J.-W. (2018). Effect of herbal mixture composed of Alchemilla vulgaris and Mimosa on wound healing process. Biomedicine and Pharmacotherapy, 106, 326–332.

    Article  PubMed  CAS  Google Scholar 

  6. Leach, M. J. (2004). Making sense of the venous leg ulcer debate: A literature review. Journal of Wound Care, 13, 52–56.

    Article  PubMed  CAS  Google Scholar 

  7. Mustoe, T. (2004). Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. The American Journal of Surgery, 187, 65S-70S.

    Article  PubMed  CAS  Google Scholar 

  8. Percival, S. L., Hill, K. E., Williams, D. W., Hooper, S. J., Thomas, D. W., & Costerton, J. W. (2012). A review of the scientific evidence for biofilms in wounds. Wound Repair and Regeneration, 20, 647–657.

    Article  PubMed  Google Scholar 

  9. Global Advanced Wound Care Products Industry 2020. Available from: https://www.globenewswire.com/news-release/2020/09/04/2089098/0/en/Global-Advanced-Wound-Care-Products-Industry.html. Accessed March 10, 2021.

  10. Palombo, E. A., & Semple, S. J. (2001). Antibacterial activity of traditional Australian medicinal plants. Journal of Ethnopharmacology, 77, 151–157.

    Article  PubMed  CAS  Google Scholar 

  11. Sibanda, T., & Okoh, A. I. (2007). The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. African Journal of Biotechnology, 6(25), 2886–2896.

    Google Scholar 

  12. Mariod, A. A., Abdelwahab, S. I., Elkheir, S., Ahmed, Y. M., Fauzi, P. N. M., & Chuen, C. S. (2012). Antioxident activity of different parts from Annona squamosa and Catuaregam nilotica methanolic extract. Acta Scientiarum Polonorum, 11(3), 249–257.

    PubMed  CAS  Google Scholar 

  13. Samy, R. P., Gopalakrishnakone, P., Houghton, P., & Ignacimuthu, S. (2006). Purification of antibacterial agents from Tragia involucrata–a popular tribal medicine for wound healing. Journal of Ethnopharmacology, 107, 99–106.

    Article  PubMed  CAS  Google Scholar 

  14. Buru, A. S., Pichika, M. R., Neela, V., & Mohandas, K. (2014). In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 153, 587–595.

    Article  PubMed  Google Scholar 

  15. Somashekar, S. B. (2013). Wound healing and indigenous drugs: Role as antioxidants: A review. Journal of Medical and Health Sciences, 2(2), 5–16.

    Google Scholar 

  16. Ghosh, P. K., & Gaba, A. (2013). Phyto-extracts in wound healing. Journal of Pharmacy and Pharmaceutical Science, 16(5), 760–820.

    Article  Google Scholar 

  17. Biswas, D., Yoganandam, G., Dey, A., & Deb, L. (2013). Evaluation of antimicrobial and wound healing potentials of ethanol extract of wedelia biflora Linn D. C. leaves. Indian Journal of Pharmaceutical Sciences, 75(2), 156–161.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Baker, S. R., Stacey, M. C., Jopp-McKay, A. G., Hoskin, S. E., & Thompson, P. J. (1991). Epidemiology of chronic venous ulcers. British Journal of Surgery, 78, 864–867.

    Article  PubMed  CAS  Google Scholar 

  19. Krishna Kumar, H. N., Bhavyashree, K. G., & Chauhan, J. B. (2012). Phytochemical screening and antibacterial activity of Stachytarpheta indica. Global Journal of Pharmacology, 6(1), 4–7.

    Google Scholar 

  20. Chandler, G. T., Westaway, J. O., & Conn, B. J. (2014). Taxanomic uncertainty of Stachytarpheta (Verbenaceae) in the Asia-Pacific and implications for invasive weed recognition and management. Journal of Plant Systematics, 16, 83–88.

    Google Scholar 

  21. Rozianoor, M. H. W., Nadia, K. N., & Nurdiana, S. (2014). Stachytarpheta jamaicensis ethanolic leaf extract as wound healer on alloxan-induced diabetic Sprague Dawley rats. Bio technology An Indian Jouirnal, 9(11), 460–466.

    CAS  Google Scholar 

  22. Joshi, V. G., Sutar, P. S., Kargar, A. A., Patil, S. A., Gopalakrishna, B., & Sureban, R. R. (2010). Screening of ethanolic extract of Stachytarpheta indica L. (Vahl) leaves for hepatoprotective activity. International Journal of Research in Ayurveda and Pharmacy, 1(1), 174–179.

    Google Scholar 

  23. Sunday, O. O., Uguru, O. M., & Akanbi, B. E. (2008). Anti-diarrhea effect of aqueous extracts of Momordica balsmina and Stachytarpheta indica in rats. Journal of Natural Products, 1, 36–45.

    Google Scholar 

  24. Ezeabara, C. A., Orachu, L. A., & CU, O., Ilodibia, C. V., Emeka, A. N. & KU, E. . (2015). Comparative study of phytochemical, proximate and mineral compositions of Stachytarpheta cayannensis (L.C. Rich) Schau and Stachytarpheta indica (Linn.) Vahl. International Journal of Plant Biology and Research, 3(1), 1027.

    Google Scholar 

  25. Princely, S., Basha, N. S., Kirubakaran, J. J., & Dhanaraju, M. D. (2013). Preliminary phytochemical screening and antimicrobial activity of aerial parts of Stachytarpheta indica L. (Vahl.). Medicinal Plants, 5(2), 96–101.

    Google Scholar 

  26. Hong, C.-E., & Lyu, S.-Y. (2011). Anti-inflammatory and anti-oxidative effects of Korean red ginseng extract in human keratinocytes. Immune Network, 11(1), 42–49.

    Article  PubMed  PubMed Central  Google Scholar 

  27. (2015) BD Cytometric Bead Array (CBA) Human inflammatory cytokines kit instruction manual. BD Biosciences, Becton, Dickinson and Company.

  28. Gierse, J. K., & Koboldt, C. M. (2001). Cyclooxygenase assays. Current protocols in pharmacology, 3(1), 1–16.

    Google Scholar 

  29. Baylac, S., & Racine, P. (2003). Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. International Journal of Aromatherapy, 13(2), 138–142.

    Article  Google Scholar 

  30. Kamatou, G. P. P., Viljoen, A. M., & Steenkamp, P. (2010). Antioxidant, anti-inflammatory activities and HPLC analysis of South African Salvia species. Food Chemistry, 119(2), 684–688.

    Article  CAS  Google Scholar 

  31. Damtoft, S., Jensen, S. R., & Nielsen, B. J. (1984). The identity of the iridoid glucoside tarphetalin with ipolamiide. Phyrochemistry, 23(4), 907–908.

    Article  CAS  Google Scholar 

  32. Javzan, S., & Selenge, D. (2013). Phytochemical study of aerial parts from Phlomis tuberosa L. Mongolian Journal of Chemistry, 14(40), 2–3.

    Google Scholar 

  33. Kırmızıbekmez, H., Piacente, S., Pizza, C., Donmez, A. A., & Calis, I. (2004). Iridoid and Phenylethanoid Glycosides from Phlomis nissolii and P. capitata. Zeitschrift für Naturforschung B, 59(5), 609–613.

    Article  Google Scholar 

  34. Yal-Aın, F. N., Erscz, T., Avcıc, K., Gotfredsen, C. H., Jensen, S. R., & Calıs, I. (2007). New iridoid glycosides from Lamium eriocephalum subsp. eriocephalum. Helvetica Chimica Acta, 90, 332–336.

    Article  Google Scholar 

  35. Akdemir, Z. S., Tatli, I. I., Bedir, E., & Khan, I. A. (2004). Iridoid and phenylethanoid glycosides from Verbascum lasianthum. Turkish Journal of Chemistry, 28, 227–234.

    CAS  Google Scholar 

  36. Krebs, H. C., & Habermehl, G. G. (1992). Two-dimensional NMR spectroscopy of G1 ycosides. Magnetic Resonance in Chemistry, 30, S56–S59.

    Article  CAS  Google Scholar 

  37. Phakeovilay, C., Disadee, W., Sahakitpichan, P., Sitthimonchai, S., Kittakoop, P., Ruchirawat, S., & Kanchanapoom, T. (2013). Phenylethanoid and flavone glycosides from Ruellia tuberosa L. Journal of Natural Medicines, 67, 228–233.

    Article  PubMed  CAS  Google Scholar 

  38. Gomez-Aguirre, Y. A., Zamilpa, A., Gonzalez-Cortazar, M., & Trejo-Tapia, G. (2012). Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Industrial Crops and Products, 36, 188–195.

    Article  CAS  Google Scholar 

  39. Guvenalp, Z., Ozbek, H., Unsalar, T., Kazaz, C., & Demirezer, L. O. (2006). Iridoid, flavonoid, and phenylethanoid glycosides from Wiedemannia orientalis. Turkish Journal of Chemistry, 30, 391–400.

    CAS  Google Scholar 

  40. Sobeh, M., Mamadalieva, N. Z., Mohamed, T., Krstin, S., Youssef, F. S., Ashour, M. L., Azimova, S. S., & Wink, M. (2016). Chemical profiling of Phlomis thapsoides (Lamiaceae) and in vitro testing of its biological activities. Medicinal Chemistry Research, 25, 2304–2315.

    Article  CAS  Google Scholar 

  41. Dinda, B., Debnath, S., & Harigaya, Y. (2007). Naturally occurring iridoids. A Review, Part 1. Chemical and Pharmaceutical Bulletin Pharmaceutical Society of Japan, 55(2), 159–222.

    Article  CAS  Google Scholar 

  42. Maquiaveli, C. D. C., Sa, A. M. O., Vieira, P. C., Silva, E. R., & d. . (2016). Stachytarpheta cayennensis extract inhibits promastigote and amastigote growth in Leishmania amazonensis via parasitearginase inhibition. Journal of Ethnopharmacology, 192, 108–113.

    Article  PubMed  Google Scholar 

  43. Chowdhury, R., Rashid, M. U., Khan, O. F., & Hasan, C. M. (2004). Bioactivity of extractives from Stachytarpheta urticaefolia. Pharmaceutical Biology, 42(3), 262–267.

    Article  Google Scholar 

  44. Calis, I., Kirmizibekmez, H., Ersoz, T., Saracoglu, I., Donmez, A. A., Mitova, M., Handjieva, N., & Popov, S. (2002). Iridoid, phenylethanoid and flavonoid glycosides from Phlomis sintenisii. Acta Pharmaceutica Turcica, 44(3), 195–203.

    CAS  Google Scholar 

  45. Penido, C., Costa, K. A., Futuro, D. O., Paiva, S. R., Kaplan, M. A. C., Figueiredo, M. R., & Henriques, M. G. M. O. (2006). Anti-inflammatory and anti-ulcerogenic properties of Stachytarpheta cayennensis (L.C. Rich) Vahl. Journal of Ethnopharmacology, 104, 225–233.

    Article  PubMed  CAS  Google Scholar 

  46. Viljoen, A., Mncwangi, N., & Vermaak, I. (2012). Anti-inflammatory iridoids of botanical origin. Current Medicinal Chemistry, 19, 2104–2127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tantisewie, B., & Sticher, O. (1975). Isolation of ipolammide from Stachytarpheta Indica. Phytochemistry, 14, 1462–1463.

    Article  CAS  Google Scholar 

  48. Roengsumran, S., Sookkongwaree, K., Jaiboon, N., Chaichit, N., & Petsom, A. (2002). Crystal structure of ipolamiide monohydrate from Stachytarpheta indica. Analytical Sciences, 18(9), 1063–1064.

    Article  PubMed  CAS  Google Scholar 

  49. Damtoft, S. (1981). Biosynthesis of lamiide and ipolamiide from 8-epi-deoxyloganin studied by 2H N.M.R. spectroscopy. Journal of the Chemical Society Chemical Communications, 5, 228–229.

    Article  Google Scholar 

  50. Andary, C., Wylde, R., Laffite, C., Privat, G., & Winternitz, F. (1982). Structures of verbascoside and orobanchoside, caffeic acid sugar esters from Orobanche rapum-genistae. Phytochemistry, 21(5), 1123–1127.

    Article  CAS  Google Scholar 

  51. Li, L., Tsao, R., Liu, Z., Liu, S., Yang, R., Young, J. C., Zhu, H., Deng, Z., Xie, M., & Fu, Z. (2005). Isolation and purification of acteoside and isoacteoside from Plantago psyllium L. by high-speed counter-current chromatography. Journal of Chromatography A, 1063, 161–169.

    Article  PubMed  CAS  Google Scholar 

  52. Pereira, A. M. S., Hernandes, C., Pereira, S. I. V., Bertoni, B. W., Franca, S. C., Pereira, P. S., & Taleb-Contini, S. H. (2014). Evaluation of anticandidal and antioxidant activities of phenolic compounds from Pyrostegia venusta (Ker Gawl.) Miers. Chemico-Biological Interactions, 224, 136–141.

    Article  PubMed  CAS  Google Scholar 

  53. Pettit, G. R., Numata, A., Takemura, T., Ode, R. H., Narula, A. S., Schmidt, J. M., Cragg, G. M., & Pase, C. P. (1990). Antineoplastic agents, 107. Isolation of acteoside and isoacteoside from castilleja linariaefolia. Journal of Natural Products, 53(2), 456–458.

    Article  PubMed  CAS  Google Scholar 

  54. Alipieva, K., Korkina, L., Orhan, I. E., & Georgiev, M. I. (2014). Verbascoside — a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnology Advances, 32, 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  55. Shiao, Y.-J., Su, M.-H., Lin, H.-C., & Wu, C.-R. (2017). Acteoside and isoacteoside protect amyloid peptide induced cytotoxicity, cognitive deficit and neurochemical disturbances in vitro and in vivo. International Journal of Molecular Sciences, 18(4), 895.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen, C., Zhao, X.-H., Yue, H.-L., Li, Y.-L., & Chen, T. (2014). Separation of phenylpropanoid glycosides from a Chinese herb by HSCCC. Journal of Chromatographic Science, 52, 395–399.

    Article  PubMed  CAS  Google Scholar 

  57. Souza, P. A. D., Silva, C. G., Machado, B. R. P., d Lucas, N. C., Leitão, G. G., Eleutherio, E. C. A., Ortiz, G. M. D., & Benchetrit, L. C. (2010). Evaluation of antimicrobial, antioxidant and phototoxic activities of extracts and isolated compounds from Stachytarpheta cayennensis (Rich.) Vahl. Verbenaceae. Brazilian Journal of Pharmacognosy, 20(6), 922–928.

    Article  Google Scholar 

  58. Sitarek, P., Skała, E., Toma, M., Wielanek, M., Szemraj, J., Nieborowska-Skorska, M., Kolasa, M., Skorski, T., Wysokińska, H., & Śliwiński, T. (2016). A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L. Tumor Biology, 37, 8753–8764.

    Article  PubMed  CAS  Google Scholar 

  59. Vertuani, S., Beghelli, E., Scalambra, E., Malisardi, G., Copetti, S., Toso, R. D., Baldisserotto, A., & Manfredini, S. (2011). Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations. Molecules, 16, 7068–7080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tang, K. S. C., Konczak, I., & Zhao, J. (2017). Phenolic compounds of the Australian native herb Prostanthera rotundifolia and their biological activities. Food Chemistry, 233, 530–539.

    Article  PubMed  CAS  Google Scholar 

  61. Etemad, L., Zafari, R., Vahdati-Mashhadian, N., Moallem, S. A., Shirvan, Z. O., & Hosseinzadeh, H. (2015). Acute, sub-acute and cell toxicity of verbascoside. Research Journal of Medicinal Plant, 9(7), 354–360.

    Article  CAS  Google Scholar 

  62. Basch, H., & Gadebusch, H. H. (1968). In vitro antimicrobial activity of dimethylsulfoxide. Applied Microbiology, 16(12), 1953–1954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cevallos, A. M., Herrera, J., & Hernandez, I.L.-V.R. (2017). Differential effects of two widely used solvents, DMSO and ethanol, on the growth and recovery of Trypanosoma cruzi Epimastigotes in Culture. Korean Journal of Parasitology, 55(1), 81–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kirkwood, Z. I., Millar, B. C., Downey, D. G., & Moore, J. E. (2018). Antimicrobial effect of dimethyl sulfoxide and N, N-dimethylformamide on Mycobacterium abscessus: Implications for antimicrobial susceptibility testing. International Journal of Mycobacteriology, 7(2), 134–136.

    Article  PubMed  CAS  Google Scholar 

  65. Tortora, G. G., Funke, B. R. & Case, C. L. (2015) Microbiology: an introduction 12 ed, Pearson Publication.

  66. Willey, J. M., Sherwood, L. & Woolverton, C. (2007) Microbiology, 7 ed, McGraw-Hill Education.

  67. Rigano, D., Formisano, C., Basile, A., Lavitola, A., Senatore, F., Rosselli, S., & Bruno, M. (2007). Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. libanoticum. Phytotherapy Research, 21, 395–397.

    Article  PubMed  CAS  Google Scholar 

  68. Nazemiyeh, H., Rahman, M. M., Gibbons, S., Nahar, L., Delazar, A., Ghahramani, M.-A., Talebpour, A.-H., & Sarker, S. D. (2008). Assessment of the antibacterial activity of phenylethanoid glycosides from Phlomis lanceolata against multiple-drug-resistant strains of Staphylococcus aureus. Journal of Natural Medicines, 62, 91–95.

    Article  PubMed  CAS  Google Scholar 

  69. Barnes, E. C., Kavanagh, A. M., Ramu, S., Blaskovich, M. A., Cooper, M. A., & Davis, R. A. (2013). Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. Phytochemistry, 93, 162–169.

    Article  PubMed  CAS  Google Scholar 

  70. Avila, J. G., d Liverant, J. G., Martınez, A., Martınez, G., Munoz, J. L., Arciniegas, A., & d Vivar, A. R. (1999). Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus. Journal of Ethnopharmacology, 66(1), 75–78.

    Article  PubMed  CAS  Google Scholar 

  71. Funes, L., Laporta, O., Cerdan-Calero, M., & Micol, V. (2010). Effects of verbascoside, a phenylpropanoid glycoside from lemon verbena, on phospholipid model membranes. Chemistry and Physics of Lipids, 163, 190–199.

    Article  PubMed  CAS  Google Scholar 

  72. Han, L., & Yin, Z. (2018). Learning to transfermicroscopy image modalities. Machine Vision and Applications, 29, 1257–1267.

    Article  Google Scholar 

  73. Kirfel, G., & Herzog, V. (2004). Migration of epidermal keratinocytes: Mechanisms, regulation, and biological significance. Protoplasma, 223, 67–78.

    Article  PubMed  CAS  Google Scholar 

  74. Kirfel, G., Borm, B., Rigort, A., & Herzog, V. (2002). The secretory β-amyloid precursor protein is a motogen for human epidermal keratinocytes. European Journal of Cell Biology, 81, 664–676.

    Article  PubMed  CAS  Google Scholar 

  75. Hoffmann, J., Twiesselmann, C., Kummer, M. P., Romagnoli, P., & Herzog, V. (2000). A possible role for the Alzheimer amyloid precursor protien in the regulation of epidermal basal cell proliferation. European Journal of Cell Biology, 79, 905–914.

    Article  PubMed  CAS  Google Scholar 

  76. Speranza, L., Franceschelli, S., Pesce, M., Reale, M., Menghini, L., Vinciguerra, I., Lutiis, M. A. D., Felaco, M., & Grilli, A. (2010). Antiinflammatory effects in THP-1 cells treated with verbascoside. Phytotherapy Research, 24, 1398–1404.

    Article  PubMed  CAS  Google Scholar 

  77. Lee, J.-W., Seo, K.-H., Ryu, H. W., Yuk, H. J., Park, H. A., Lim, Y. R., Ahn, K.-S., & Oh, S.-R. (2018). Anti-inflammatory effect of stem bark of Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and LPS induced murine model of acute lung injury. Journal of Ethnopharmacology, 210, 23–30.

    Article  PubMed  Google Scholar 

  78. Kostyuk, V. A., Potapovich, A. I., Suhan, T. O., d Luca, C., & Korkina, L. G. (2011). Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. European Journal of Pharmacology, 658, 248–256.

    Article  PubMed  CAS  Google Scholar 

  79. Pastore, S., Lulli, D., Fidanza, P., Potapovich, A. I., Kostyuk, V. A., Luca, C. D., Chik, E. M., & Korkina, L. G. (2012). Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxidants and Redox Signaling, 16(4), 314–328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Georgiev, M., Pastore, S., Lulli, D., Alipieva, K., Kostyuk, V., Potapovich, A., Panetta, M., & Korkina, L. (2012). Verbascum xanthophoeniceum-derived phenyl ethanoid glycosides are potent inhibitors of inflammatory chemokines in dormant and interferon-gamma-stimulated human keratinocytes. Journal of Ethnopharmacology, 144, 754–760.

    Article  PubMed  CAS  Google Scholar 

  81. Sperotto, N. D. D. M., Luiza, S., Rodrigo, M. V., Jeferson, G. H., Valeria, F. P., Priscila, V., Jose, A. B. C., Adriana, R., Jenifer, S., & Dinara, J. M. (2018). Wound healing and anti-inflammatory activities induced by a Plantago australis hydroethanolic extract standardized in verbascoside. Journal of Ethnopharmacology, 225, 178–188.

    Article  Google Scholar 

  82. Schapoval, E. E. S., d Vargas, M. R. W., Chaves, C. G., Bridi, R., Zuanazzi, J. A., & Henriques, A. T. (1998). Antiinflammatory and antinociceptive activities of extracts and isolated compounds from Stachytarpheta cayennensis. Journal of Ethnopharmacology, 60, 53–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VA and TC contributed to the study conception and design. VA conducted the experiments and the research work. PK analysed and interpreted NMR data. Analysis and interpretation of experimental data and preparation of manuscript were done by VA. TC and CC reviewed and edited the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Vajira Asela Agampodi.

Ethics declarations

Ethics Approval

The management and use of the bio-specimens, Human immortalized keratinocyte cell line (HaCaT, Catalogue No.T0020001, Addexbio Technologies, USA) was accorded by the Human Research Ethics Committee, Queensland University of Technology, Brisbane, Australia (approval number: 1700001128).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agampodi, V.A., Katavic, P., Collet, C. et al. Antibacterial and Anti-inflammatory Activity of Extracts and Major Constituents Derived from Stachytarpheta indica Linn. Leaves and Their Potential Implications for Wound Healing. Appl Biochem Biotechnol 194, 6213–6254 (2022). https://doi.org/10.1007/s12010-021-03635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03635-4

Keywords

Navigation