Skip to main content
Log in

Improvement of Fucosylated Oligosaccharides Synthesis by α-L-Fucosidase from Thermotoga maritima in Water-Organic Cosolvent Reaction System

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water-organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10 and temperature 90–95 °C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from T. maritima as biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bode, L. (2015). The functional biology of human milk oligosaccharides. Early Human Development, 91(11), 619–622. https://doi.org/10.1016/j.earlhumdev.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  2. Zehra, S., Khambati, I., Vierhout, M., Mian, M. F., Buck, R., & Forsythe, P. (2018). Human milk oligosaccharides attenuate antigen-antibody complex induced chemokine release from human intestinal epithelial cell lines. Journal of Food Science, 83(2), 499–508. https://doi.org/10.1111/1750-3841.14039

    Article  CAS  PubMed  Google Scholar 

  3. Bode, L., & Jantscher-Krenn, E. (2012). Structure-function relationships of human milk oligosaccharides. Advances in Nutrition, 3(3), 383S-391S. https://doi.org/10.3945/an.111.001404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gabrielli, O., Zampini, L., Galeazzi, T., Padella, L., Santoro, L., Peila, C., Giuliani, F., Bertino, E., Fabris, C., & Coppa, G. V. (2011). Preterm milk oligosaccharides during the first month of lactation. Pediatrics, 128(6), e1520–e1531. https://doi.org/10.1542/peds.2011-1206

    Article  PubMed  Google Scholar 

  5. Romero-Téllez, S., Lluch, J. M., González-Lafont, À., & Masgrau, L. (2019). Comparing hydrolysis and transglycosylation reactions catalyzed by Thermus thermophilus β-glycosidase. A combined MD and QM/MM study. Frontiers in Chemistry, 7, 200. https://doi.org/10.3389/fchem.2019.00200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeuner, B., & Meyer, A. S. (2020). Enzymatic transfucosylation for synthesis of human milk oligosaccharides. Carbohydrate Research, 493, 108029. https://doi.org/10.1016/j.carres.2020.108029

  7. Van Rantwijk, F., Woudenberg-van Oosterom, M., & Sheldon, R. A. (1999). Glycosidase-catalysed synthesis of alkyl glycosides. Journal of Molecular Catalysis B: Enzymatic, 6(6), 511–532. https://doi.org/10.1016/S1381-1177(99)00042-9

    Article  Google Scholar 

  8. Wan, L., Zhu, Y., Zhang, W., & Mu, W. (2020). α-L-Fucosidases and their applications for the production of fucosylated human milk oligosaccharides. Applied Microbiology and Biotechnology, 104, 5619–5631. https://doi.org/10.1007/s00253-020-10635-7

    Article  CAS  PubMed  Google Scholar 

  9. Guzmán-Rodríguez, F., Alatorre-Santamaría, S., Gómez-Ruiz, L., Rodríguez-Serrano, G., García-Garibay, M., & Cruz-Guerrero, A. (2018). Synthesis of a fucosylated trisaccharide via transglycosylation by α-L-fucosidase from Thermotoga maritima. Applied Biochemistry and Biotechnology, 186(3), 681–691. https://doi.org/10.1007/s12010-018-2771-x

    Article  CAS  PubMed  Google Scholar 

  10. Lezyk, M., Jers, C., Kjaerulff, L., Gotfredsen, C. H., Mikkelsen, M. D., & Mikkelsen, J. D. (2016). Novel α-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLoS ONE, 11(1), 1–18. https://doi.org/10.1371/journal.pone.0147438

    Article  CAS  Google Scholar 

  11. Liu, P., Zhang, H., Wang, Y., Chen, X., Jin, L., Xu, L., & Xiao, M. (2020). Screening and characterization of an α-L-fucosidase from Bacteroides fragilis NCTC9343 for synthesis of fucosyl-N-acetylglucosamine disaccharides. Applied Microbiology and Biotechnology, 104(18), 7827–7840. https://doi.org/10.1007/s00253-020-10759-w

    Article  CAS  PubMed  Google Scholar 

  12. Zeuner, B., Muschiol, J., Holck, J., Lezyk, M., Gedde, M. R., Jers, C., Mikkelsen, J. D., & Meyer, A. S. (2018). Substrate specificity and transfucosylation activity of GH29 α-L-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnology, 41, 34–45. https://doi.org/10.1016/j.nbt.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  13. Manas, N. H., Illias, R. M., & Mahadi, N. M. (2017). Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Critical Reviews in Biotechnology, 38(2), 272–293. https://doi.org/10.1080/07388551.2017.1339664

    Article  CAS  PubMed  Google Scholar 

  14. Mangas-Sánchez, J., & Adlercreutz, P. (2015). Enzymatic preparation of oligosaccharides by transglycosylation: A comparative study of glucosidases. Journal of Molecular Catalysis B: Enzymatic, 122, 51–55. https://doi.org/10.1016/j.molcatb.2015.08.014

    Article  CAS  Google Scholar 

  15. Hansson, T., Andersson, M., Wehtje, E., & Adlercreutz, P. (2001). Influence of water activity on the competition between β-glycosidase-catalysed transglycosylation and hydrolysis in aqueous hexanol. Enzyme and Microbial Technology, 29(8–9), 527–534. https://doi.org/10.1016/S0141-0229(01)00421-5

    Article  CAS  Google Scholar 

  16. Khatami, S., Ashtiani, F. Z., Bonakdarpour, B., & Mehrdad, M. (2014). The enzymatic production of lactulose via transglycosylation in conventional and non-conventional media. International Dairy Journal., 34(1), 74–79. https://doi.org/10.1016/j.idairyj.2013.07.010

    Article  CAS  Google Scholar 

  17. Zeuner, B., Jers, C., Mikkelsen, J. D., & Meyer, A. S. (2014). Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural and Food Chemistry, 62(40), 9615–9631. https://doi.org/10.1021/jf502619p

    Article  CAS  PubMed  Google Scholar 

  18. Farkas, E., Thiem, J., & Ajisaka, K. (2000). Enzymatic synthesis of fucose-containing disaccharides employing the partially purified α-L-fucosidase from Penicillium multicolor. Carbohydrate Research, 328(3), 293–299. https://doi.org/10.1016/S0008-6215(00)00113-0

    Article  CAS  PubMed  Google Scholar 

  19. Svensson, S. C., & Thiem, J. (1990). Purification of α-L-fucosidase by C-glycosylic affinity chromatography, and the enzymic synthesis of α-L-fucosyl disaccharides. Carbohydrate Research, 200, 391–402. https://doi.org/10.1016/0008-6215(90)84205-9

    Article  CAS  PubMed  Google Scholar 

  20. Cruz-Guerrero, A. E., Gómez-Ruiz, L., Viniegra-Gónzalez, G., Bárzana, E., & García-Garibay, M. (2006). Influence of water activity in the synthesis of galactooligosaccharides produced by a hyperthermophilic β-glycosidase in an organic medium. Biotechnology and Bioengineering, 93(6), 1123–1129. https://doi.org/10.1002/bit.20824

    Article  CAS  PubMed  Google Scholar 

  21. Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2017). Optimization of reaction conditions and the donor substrate in the synthesis of hexyl-β-D-galactoside. Process Biochemistry, 58, 128–136. https://doi.org/10.1016/j.procbio.2017.05.005

    Article  CAS  Google Scholar 

  22. Akiba, S., Yamamoto, K., & Kumagai, H. (1999). Transglycosylation activity of the Endo-β-1,4-glucanase from Aspergillus niger IFO31125 and its application. Journal of Bioscience and Bioengineering, 87(5), 576–580. https://doi.org/10.1016/S1389-1723(99)80117-0

    Article  CAS  PubMed  Google Scholar 

  23. Bell, G., Janssen, A. E., & Halling, P. J. (1997). Water activity fails to predict critical hydration level for enzyme activity in polar organic solvents: Interconversion of water concentrations and activities. Enzyme and Microbial Technology, 20(6), 471–477. https://doi.org/10.1016/S0141-0229(96)00204-9

    Article  CAS  Google Scholar 

  24. García-Garibay, M., López-Munguía, A., & Bárzana, E. (2000). Effect of β-galactosidase hydration on alcoholysis reaction in organic one-phase liquid systems. Biotechnology and Bioengineering, 70(6), 647–653. https://doi.org/10.1002/1097-0290(20001220)70:6%3c647::AID-BIT6%3e3.0.CO;2-Z

    Article  PubMed  Google Scholar 

  25. Okuyama, M., Matsunaga, K., Watanabe, K. I., Yamashita, K., Tagami, T., Kikuchi, A., Ma, M., Klahan, P., Mori, H., & Kimura, A. (2017). Efficient synthesis of α-galactosyl oligosaccharides using a mutant Bacteroides thetaiotaomicron retaining α-galactosidase (BtGH97b). The FEBS Journal, 284(5), 766–783. https://doi.org/10.1111/febs.14018

    Article  CAS  PubMed  Google Scholar 

  26. Wu, Y., Yuan, S., Chen, S., Wu, D., Chen, J., & Wu, J. (2013). Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Food Chemistry, 138(2–3), 1588–1595. https://doi.org/10.1016/j.foodchem.2012.11.052

    Article  CAS  PubMed  Google Scholar 

  27. Ji, E. S., Park, N. H., & Oh, D. K. (2005). Galacto-oligosaccharide production by a thermostable recombinant β-galactosidase from Thermotoga maritima. World Journal of Microbiology and Biotechnology, 21, 759–764. https://doi.org/10.1007/s11274-004-5487-8

    Article  CAS  Google Scholar 

  28. Hansson, T., Kaper, T., van der Oost, J., De Vos, W., & Adlercreutz, P. (2001). Improved oligosaccharide synthesis by protein engineering of β-glucosidase CelB from hyperthermophilic Pyrococcus furiosus. Biotechnology and Bioengineering, 73(3), 203–210. https://doi.org/10.1002/bit.1052

    Article  CAS  PubMed  Google Scholar 

  29. Sulzenbacher, G., Bignon, C., Nishimura, T., Tarling, C. A., Withers, S. G., Henrissat, B., & Bourne, Y. (2004). Crystal structure of Thermotoga maritima α-L-fucosidase: Insights into the catalytic mechanism and the molecular basis for fucosidosis. Journal of Biological Chemistry, 279(13), 13119–13128. https://doi.org/10.1074/jbc.M313783200

    Article  CAS  PubMed  Google Scholar 

  30. Tarling, C. A., He, S., Sulzenbacher, G., Bignon, C., Bourne, Y., Henrissat, B., & Withers, S. G. (2003). Identification of the catalytic nucleophile of the family 29 α-L-fucosidase from Thermotoga maritima through trapping of a covalent glycosyl-enzyme intermediate and mutagenesis. Journal of Biological Chemistry, 278(48), 47394–47399. https://doi.org/10.1074/jbc.M306610200

    Article  CAS  PubMed  Google Scholar 

  31. Zeuner, B., Nyffenegger, C., Mikkelsen, J. D., & Meyer, A. S. (2016). Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. New Biotechnology, 33(3), 355–360. https://doi.org/10.1016/j.nbt.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  32. Warmerdam, A., Boom, R. M., & Janssen, A. E. M. (2013). β-Galactosidase stability at high substrate concentrations. Springerplus, 2(1), 402. https://doi.org/10.1186/2193-1801-2-402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fourage, L., Dion, M., & Colas, B. (2000). Kinetic study of a thermostable β-glycosidase of Thermus thermophiles. Effects of temperature and glucose on hydrolysis and transglycosylation reactions. Glycoconjugate Journal, 17(6), 377–383. https://doi.org/10.1023/A:1007104030314

    Article  CAS  PubMed  Google Scholar 

  34. Bridiau, N., Issaoui, N., & Maugard, T. (2010). The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the β-galactosidase from Bacillus circulans in hydro-organic media. Biotechnology Progress, 26(5), 1278–1289. https://doi.org/10.1002/btpr.445

    Article  CAS  PubMed  Google Scholar 

  35. Manas, N. H., Pachelles, S., Mahadi, N. M., & Illias, R. M. (2014). The characterisation of an alkali-stable maltogenic amylase from Bacillus lehensis G1 and improved malto-oligosaccharide production by hydrolysis suppression. PLoS ONE, 9(9), e106481. https://doi.org/10.1371/journal.pone.0106481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pyeon, H. M., Lee, Y. S., & Choi, Y. L. (2019). Cloning, purification, and characterization of GH3 β-glucosidase, MtBgl85, from Microbulbifer thermotolerans DAU221. PeerJ, 7, e7106. https://doi.org/10.7717/peerj7106

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee, H. J., Lee, Y. S., & Choi, Y. L. (2018). Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from Microbulbifer thermotolerans DAU221. Biotechnology for Biofuels, 11(303), 1–14. https://doi.org/10.1186/s13068-018-1299-1

    Article  CAS  Google Scholar 

  38. Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65(1), 1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mallek-Fakhfakh, H., & Belghith, H. (2016). Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides. Carbohydrate Research, 419, 41–50. https://doi.org/10.1016/j.carres.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  40. Jiang, Z., Zhu, Y., Li, L., Yu, X., Kusakabe, I., Kitaoka, M., & Hayashi, K. (2004). Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl β-D-xylobiosides and xylosides. Journal of Biotechnology, 114(1–2), 125–134. https://doi.org/10.1016/j.jbiotec.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  41. Bankova, E., Bakalova, N., Petrova, S., & Kolev, D. (2006). Enzymatic synthesis of oligosaccharides and alkylglycosides in water-organic media via transglycosylation of lactose. Biotechnology and Biotechnological Equipment, 20(3), 114–119. https://doi.org/10.1080/13102818.2006.10817387

    Article  CAS  Google Scholar 

  42. Trincone, A., Giordano, A., Perugino, G., Rossi, M., & Moracci, M. (2005). Highly productive autocondensation and transglycosylation reactions with Sulfolobus solfataricus glycosynthase. ChemBioChem, 6(8), 1431–1437. https://doi.org/10.1002/cbic.200400430

    Article  CAS  PubMed  Google Scholar 

  43. Li, J., Cheng, H. N., Nickol, R. G., & Wang, P. G. (1999). Enzymatic modification of hydroxyethylcellulose by transgalactosylation with β-galactosidases. Carbohydrate Research, 316(1–4), 133–137. https://doi.org/10.1016/S0008-6215(99)00041-5

    Article  CAS  PubMed  Google Scholar 

  44. Li, D., Park, J. H., Park, J. T., Park, C. S., & Park, K. H. (2004). Biotechnological production of highly soluble daidzein glycosides using Thermotoga maritima maltosyltransferase. Journal of Agricultural and Food Chemistry, 52(9), 2561–2567. https://doi.org/10.1021/jf035109f

    Article  CAS  PubMed  Google Scholar 

  45. Baek, J. S., Kim, M. J., Cha, H., Lee, H. S., Li, D., Kim, J. W., Kim, Y. R., Moon, T. W., & Park, K. (2003). Enhanced transglycosylation activity of Thermus maltogenic amylase in acetone solution. Food Science and Biotechnology, 12(6), 639–643.

    CAS  Google Scholar 

Download references

Funding

This work was supported by Consejo Nacional de Ciencia y Tecnología (grant number 592532) and Universidad Autónoma Metropolitana.

Author information

Authors and Affiliations

Authors

Contributions

R-A. M.—methodology, formal analysis and investigation, writing (original draft preparation). A-S. S—formal analysis and investigation, writing (review and editing). G-G. M.—conceptualization, formal analysis and investigation, funding acquisition, resources. G-R. F.—methodology. G-R. L.—formal analysis and investigation, writing (review and editing). R-S. G.—funding acquisition, resources. C-G.A.—conceptualization, formal analysis and investigation, writing (original draft preparation), funding acquisition, resources, supervision.

Corresponding author

Correspondence to Alma E. Cruz-Guerrero.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robles-Arias, M.A., García-Garibay, M., Alatorre-Santamaría, S. et al. Improvement of Fucosylated Oligosaccharides Synthesis by α-L-Fucosidase from Thermotoga maritima in Water-Organic Cosolvent Reaction System. Appl Biochem Biotechnol 193, 3553–3569 (2021). https://doi.org/10.1007/s12010-021-03628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03628-3

Keywords

Navigation