Skip to main content

Advertisement

Log in

Effect of Lipopeptide-Loaded Chitosan Nanoparticles on Candida albicans Adhesion and on the Growth of Leishmania major

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cyclic lipopeptides produced by Bacillus species exhibit interesting therapeutic potential. However, their clinical use remains limited due to their low stability, undesirable interactions with host macromolecules, and their potential toxicity to mammalian cells. The present work aims to develop suitable lipopeptide-loaded chitosan nanoparticles with improved biological properties and reduced toxicity. Surfactin and bacillomycin D lipopeptides produced by Bacillus amyloliquefaciens B84 strain were loaded onto chitosan nanoparticles by ionotropic gelation process. Nanoformulated lipopeptides exhibit an average size of 569 nm, a zeta potential range of 38.8 mV, and encapsulation efficiency (EE) of 85.58%. Treatment of Candida (C.) albicans cells with encapsulated lipopeptides induced anti-adhesive activity of 81.17% and decreased cell surface hydrophobicity (CSH) by 25.53% at 2000 µg/mL. Nanoformulated lipopeptides also induced antileishmanial activity against Leishmania (L.) major promastigote and amastigote forms at respective IC50 values of 14.37 µg/mL and 22.45 µg/mL. Nanoencapsulated lipopeptides exerted low cytotoxicity towards human erythrocytes and Raw 264.7 macrophage cell line with respective HC50 and LC50 values of 770 µg/mL and 234.56 µg/mL. Nanoencapsulated lipopeptides could be used as a potential delivery system of lipopeptides to improve their anti-adhesive effect against C. albicans cells colonizing medical devices and their anti-infectious activity against leishmania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The authors confirm that all data of this finding are fully available without restriction. All relevant data are within the paper.

References

  1. Janek, T., Łukaszewicz, M., & Krasowska, A. (2012). Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiology, 12, 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva, S., Rodrigues, C. F., Araújo, D., Rodrigues, M. E., & Henriques, M. (2017). Candida species biofilms’ antifungal resistance. Journal of Fungi, 3, 8.

    Article  PubMed Central  CAS  Google Scholar 

  3. Dimkic´, I., Stankovic´. S., Nišavic´.M., Petkovic´. M., Ristivojevic´.P., Fira. D., & Beric. T. . (2017). The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Frontiers in Microbiology, 8, 925.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jemil, N., Ben Ayed, H., Manresa, A., Nasri, M., & Hmidet, N. (2017). Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiology, 17, 144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Porrini, M. P., Audisio, M. C., Sabaté, D. C., Ibarguren, C., Medici, S. K., Sarlo, E. G., Garrido, P. M., & Eguaras, M. J. (2010). Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology Research, 107, 381–388.

    Article  PubMed  Google Scholar 

  6. Ramachandran, R., Shrivastava, M., Namitha, N., Narayanan, N. N., Thakur, R. L., Chakrabarti, A., & Roy, U. (2018). Evaluation of antifungal efficacy of three new cyclic lipopeptides of the class bacillomycin from Bacillus subtilis RLID 12.1. Antimicrobial Agents and Chemotherapy, 62, e01457-e1517.

    Article  PubMed  Google Scholar 

  7. Regine, M. D., & Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology, 87, 151–174.

    Article  Google Scholar 

  8. Biniarz, P., Baranowska, G., Feder-Kubis, J., & Krasowska, A. (2015). The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Antonie van Leeuwenhoek, 108, 343–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ceresa, C., Rinaldi, M., Chiono, V., Carmagnola, I., & Allegrone, G. L. (2016). Fracchia lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek, 109, 1375–1388.

    Article  CAS  PubMed  Google Scholar 

  10. Shakerifard, P., Gancel, F., Jacques, P., & Faille, C. (2009). Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling, 25, 533–541.

    Article  PubMed  Google Scholar 

  11. Piras, A. M., Maisetta, G., Sandreschi, S., Gazzarri, M., Bartoli, C., Grassi, L., Esin, S., Chiellini, F., & Batoni, G. (2015). Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity invitro against clinical isolates of Staphylococcus epidermidis. Frontiers in Microbiology, 6, 1–10.

    Article  Google Scholar 

  12. Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9, 53.

    Article  PubMed Central  CAS  Google Scholar 

  13. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in Microbiology, 12, 636588.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kostag, M., & El Seoud, O. A. (2021). Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review. Carbohydrate Polymer Technologies and Applications, 2, 100079.

    Article  Google Scholar 

  15. Pati, S., Jena, P., Shahimi, S., Nelson, B. R., Acharya, D., Dash, B. P., & Chatterji, A. (2020). Characterization dataset for pre- and post-irradiated shrimp waste chitosan. Data in Brief, 32, 106081.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pati, S., Chatterji, A., Dash, B. P., Nelson, B. R., Sarkar, T., Shahimi, S., Edinur, H. A., Abd Manan, T. S. B., Jena, P., Mohanta, Y. K., & Acharya, D. (2020). Structural characterization and antioxidant potential of chitosan by γ-irradiation from the carapace of horseshoe crab. Polymers, 12, 236.

    Article  CAS  Google Scholar 

  17. Silva, N. C., Silva, S., Sarmento, B., & Pintado, M. (2015). Chitosan nanoparticles for daptamycin delivery in ocular treatment of bacterial endophthalmitis. Drug Delivery, 22, 885–893.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, J., Liu, Y., Yang, L., & Zhou, F. (2019). Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus. International Journal of Biological Macromolecules, 129, 980–988.

    Article  CAS  PubMed  Google Scholar 

  19. Aguayo, P. R., Larenas, T. B., Godoy, C. A., Rivas, B. C., González-Casanova, J., Rojas-Gómez, D., Fuentes, Nelson Caro, & N. C. . (2020). Antimicrobial and antibiofilm capacity of chitosan nanoparticles against wild type strain of Pseudomonas sp. isolated from milk of cows diagnosed with bovine mastitis. Antibiotics, 9, 551.

    Article  CAS  Google Scholar 

  20. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tabbene, O., Kalai, L., Ben Slimene, I., Karkouch, I., Elkahoui, S., Gharbi, A., Cosette, P., Mangoni, M. L., Jouenne, T., & Limam, F. (2011). Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiology Letters, 316, 108–114.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., & Chi, & Y. T. . (2004). Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology, 97, 942–949.

    Article  CAS  PubMed  Google Scholar 

  23. Tabbene, O., Azaiez, S., Di Grazia, A., Karkouch, I., Ben Slimene, I., Elkahoui, S., Alfeddy, M. N., Casciaro, B., Luca, V., Limam, F., & Mangoni, M. L. (2016). Bacillomycin D and its combination with amphotericin B: Promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. Journal of Applied Microbiology, 120, 289–300.

    Article  CAS  PubMed  Google Scholar 

  24. Varma, R., & Vasudevan, S. (2020). Extraction, characterization, and antimicrobial activity of chitosan from horse mussel Modiolus modiolus. ACS Omega, 5, 20224–20230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Debnath, S. K., Saisivam, S. Debanth., & M., & Omri, A. . (2018). Development and evaluation of chitosan nanoparticles based dry powder inhalation formulations of Prothionamide. PLoS ONE, 13, e0190976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tabbene, O., Di Grazia, A., Azaiez, S., Ben Slimene, I., Elkahoui, S., Alfeddy, M. N., Casciaro, B., Luca, V., Limam, F., & Mangoni, M. L. (2015). Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenic Candida species. FEMS Yeast Research, 15, Fov022.

    Article  PubMed  CAS  Google Scholar 

  27. Essid, R., Rahali, F. Z., Msaada, K., Sghair, I., Hammami, K., Bouratbine, A., Aoun, K., & Limam, F. (2015). Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Industrial Crops and Products, 77, 795–802.

    Article  CAS  Google Scholar 

  28. Riezk, A., Raynes, J. G., Yardley, V., Murdan, S., & Croft, S. L. (2020). Activity of chitosan and its derivatives against Leishmania major and Leishmania mexicana in vitro. Antimicrobial Agents and Chemotherapy, 64, e01772-e1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mangoni, M. L., Rinaldi, A. C., Di Giulio, A., Mignogna, G., Bozzi, A., Barra, D., & Simmaco, M. (2000). Structure–function relationships of temporins, small antimicrobial peptides from amphibian skin. European Journal of Biochemistry, 267, 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  30. Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology & Biotechnological Equipment, 31, 446–459.

    Article  CAS  Google Scholar 

  31. Stein, T. (2008). Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lanthibiotic-producing bacteria. Rapid Commun Mass Spectr, 22, 1146–1152.

    Article  CAS  Google Scholar 

  32. Tang, J. S., Zhao, F., Gao, H., Dai, Y., Yao, Z. H., Hong, K., Li, J., Ye, W. C., & Yao, X. S. (2010). Characterization and online detection of surfactin isomers based on HPLC-MSn analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS-induced macrophages. Marine Drugs, 8, 2605–2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao, J. H., Chen, P. Y., Yang, Y. L., Kan, S. C., Hsieh, F. C., & Liu, Y. C. (2016). Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules, 21, 1670.

    Article  CAS  PubMed Central  Google Scholar 

  34. Ma, Y., Kong, Q., Qin, C., Chen, Y., Chen, Y., Lv, R., & Zhou, G. (2016). Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC–ESI–MS/MS. AMB Express, 6, 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kecskeméti, A., Bartal, A., Bóka, B., Kredics, L., Manczinger, L., Shine, K., Alharby, N. S., Khaled, J. M., Varga, M., Vágvölgyi, C., & Szekeres, A. (2018). High-frequency occurrence of surfactin monomethyl isoforms in the ferment broth of a Bacillus subtilis strain revealed by ion trap mass spectrometry. Molecules, 23, 2224.

    Article  PubMed Central  CAS  Google Scholar 

  36. Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 90, 622–629.

    Article  CAS  PubMed  Google Scholar 

  37. Ahimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27, 749–754.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, T., Shi, Z. Q., Hu, L. B., Cheng, L. G., & Wang, F. (2008). Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World Journal of Microbiology and Biotechnology, 24, 783–788.

    Article  CAS  Google Scholar 

  39. Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M., & Garcia, A. F. (2004). Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal of Applied Microbiology, 97, 1247–1256.

    Article  CAS  PubMed  Google Scholar 

  40. Koyani, R. D., & Vazquez-Duhalt, R. (2016). Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation. Environmental Science Pollution Research, 23, 18850–18857.

    Article  CAS  PubMed  Google Scholar 

  41. López-Meneses, A. K., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mouriño-Pérez, R. R., & Cortez-Rocha, M. O. (2018). Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT - Food Science and Technology, 96, 597–603.

    Article  CAS  Google Scholar 

  42. Jingou, J., Shilei, H., Weiqi, L., Danjun, W., Tengfei, W., & Yi, X. (2011). Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and In vitro release study. Colloids and Surfaces B: Biointerfaces, 83, 103–107.

    Article  PubMed  CAS  Google Scholar 

  43. Bangun, H., Tandiono, S., & Arianto, A. (2018). Preparation and evaluation of chitosan-tripolyphosphate nanoparticles suspension as an antibacterial agent. Journal of Applied Pharmaceutical Science, 8, 147–156.

    Article  CAS  Google Scholar 

  44. Suzery, M., Hadiyanto, Majid, D., Setyawan, D., & Sutanto H. (2017). Improvement of stability and antioxidant activities by using phycocyanin - chitosan encapsulation technique. 2nd International Conference on Tropical and Coastal Region Eco Development 2016, Earth and Environmental Science, 55, 012052.

  45. Panwar, R., Asvene, K., Sharma, A. K., Kaloti, M., Dutt, D., & Pruthi, V. (2016). Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Applied Nanoscience, 6, 803–813.

    Article  CAS  Google Scholar 

  46. Dounighi, N. M., Eskandari, R., Avadi, M. R., Zolfagharian, H., Sadeghi, A. M. M., & Rezayat, M. (2012). Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. The Journal of Venomous Animals and Toxins including Tropical Diseases, 18, 44–52.

    Article  CAS  Google Scholar 

  47. Sotelo-Boyas, M. E., Correa-Pacheco, Z. N., Bautista-Banos, S., & Corona-Rangel, M. L. (2017). Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT - Food Science and Technology, 77, 15–20.

    Article  CAS  Google Scholar 

  48. Semete, B., Booysen, L. I., Kalombo, L., Venter, J. D., Katata, L., Ramalapa, B., Verschoor, J. A., & Swai, H. (2010). In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicology and Applied Pharmacology, 249, 158–165.

    Article  CAS  PubMed  Google Scholar 

  49. de Campos, A. M., Sanchez, A., & Alonso, M. J. (2001). Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporine A. International Journal of Pharmaceutics, 224, 159–168.

    Article  PubMed  Google Scholar 

  50. Gan, Q., & Wang, T. (2007). Chitosan nanoparticles as protein delivery carrier – Systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces, 59, 24–34.

    Article  CAS  PubMed  Google Scholar 

  51. Pan, Y., Li, Y. J., Zhao, H. Y., Zheng, J. M., Xu, H., Wei, G., Hao, J. S., & Cui, F. D. (2002). Bioadhesive polysaccharide in protein delivery system: Chitosan nanoparticles improve the intestinal absorption of insulin in vivo. International Journal of Pharmaceutics, 249, 139–147.

    Article  CAS  PubMed  Google Scholar 

  52. Jarudilokkul, S., Tongthammachat, A., & Boonamnuayvittaya, V. (2011). Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean Journal of Chemical Engineering, 28, 1247–1251.

    Article  CAS  Google Scholar 

  53. Koppolu, B. P., Smith, S. G., Ravindranathan, S., Jayanthi, S., Kumar, T. K. S., & Zaharoff, D. A. (2014). Controlling chitosan-based encapsulation for protein and vaccine delivery. Biomaterials, 35, 4382–4389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chhonker, Y. S., Prasad, Y. D., Chandasana, H., Vishvkarma, A., Mitra, K., Shukla, P. K., & Bhatta, R. S. (2015). Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. International Journal of Biological Macromolecules, 72, 1451–1458.

    Article  CAS  PubMed  Google Scholar 

  55. McCall, A. D., Pathirana, R. U., Prabhakar, A., Paul, J., Cullen, P. J., & Edgerton, M. (2019). Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms and Microbiomes, 5, 1–12.

    Article  CAS  Google Scholar 

  56. Gondim, B. L. C., Castellano, L. R. C., de Castro, R. D., Machado, G., Carlo, H. L., Valença, A. M. G., & de Carvalho, F. G. (2018). Effect of chitosan nanoparticles on the inhibition of Candida spp. biofilm on denture base surface. Archives of Oral Biology, 94, 99–107.

    Article  CAS  PubMed  Google Scholar 

  57. de Carvalho, F. G., Magalhães, T. C., Teixeira, N. M., Gondim, B. L. C., Carlo, H. L., Santos, R. L., de Oliveira, A. R., & Denadai, A. M. L. (2019). Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Materials Science and Engineering: C, 104, 109885.

    Article  CAS  Google Scholar 

  58. Azcurra, A. I., Barembaum, S. R., Bojanich, M. A., Calamari, S. E., Aguilar, J., Battellino, L. J., & Dorronsoro, S. T. (2006). Effect of the high molecular weight chitosan and sodium alginate on Candida albicans hydrophobicity and adhesion to cells. Medicina Oral, Patologia Oral y Cirugia Bucal, 11, 120–125.

    Google Scholar 

  59. Rautela, R., Singh, A. K., Shukla, A., & Cameotra, S. S. (2014). Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie van Leeuwenhoek, 105, 809–821.

    Article  CAS  PubMed  Google Scholar 

  60. Riezk, A., Van Bocxlaer, K., Yardley, V., Murdan, S., & Simon, L. C. (2020). Activity of amphotericin B-loaded chitosan nanoparticles against experimental cutaneous leishmaniasis. Molecules, 25, 4002.

    Article  CAS  PubMed Central  Google Scholar 

  61. Casa, D. M., Carraro, T. C. M. M., de Camargo, L. E. A., Dalmolin, L. F., Khalil, N. M., & Mainardes, R. M. (2015). Poly(L-lactide) Nanoparticles reduce amphotericin B cytotoxicity and maintain its in vitro antifungal activity. Journal of Nanoscience and Nanotechnology, 15, 848–854.

    Article  CAS  PubMed  Google Scholar 

  62. Almaaytah, A., Mohammed, G. K., Abualhaijaa, A., & Al-Balas, Q. (2017). Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Design, Development and Therapy, 11, 3159–3170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, Y., Li, J., Lu, F., Deng, J., Zhang, J., Fang, P., Peng, X., & Zhou, S. F. (2015). A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Design, Development and Therapy, 9, 2635–2645.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jamil, B., Abbasi, R., Abbasi, S., Imran, M., Khan, S. U., Ihsan, A., Javed, S., Bokhari, H., & Imran, M. (2016) Encapsulation of cardamon essential oil in chitosan nano-composites: In-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Frontiers in Microbiology, 7, 1580.

  65. Sharma, R., Raghav, R., Priyanka, K., Rishi, P., Sharma, S., Srivastava, S., & Verma, I. (2019). Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Scientific Reports, 9, 7866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was funded by grants from the Tunisian Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

Siwar Soussi, Rym Essid, Ines Karkouch, and Sarra Bachkouel performed the experiments; Houda Saad, Ezzedine Aouani, and Ferid Limam analyzed the experimental data; Olfa Tabbene wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Olfa Tabbene.

Ethics declarations

Ethics Approval

This paper does not involve any human participants and animals performed by any of the authors.

Consent to Participate

All authors have agreed to participate in the publication of this paper.

Consent for Publication

All authors have agreed to publish this paper in Journal of Applied Biochemistry and Biotechnology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soussi, S., Essid, R., Karkouch, I. et al. Effect of Lipopeptide-Loaded Chitosan Nanoparticles on Candida albicans Adhesion and on the Growth of Leishmania major. Appl Biochem Biotechnol 193, 3732–3752 (2021). https://doi.org/10.1007/s12010-021-03621-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03621-w

Keywords

Navigation