Skip to main content

Advertisement

Log in

Relationship Between CASP9 and CASP10 Gene Polymorphisms and Cancer Susceptibility: Evidence from an Updated Meta-analysis

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Author Correction to this article was published on 16 September 2021

This article has been updated

Abstract

Caspase-9 (CASP9) and caspase-10 (CASP10) polymorphisms were associated with human cancers; however, the results remain controversial. In this meta-analysis, we aimed to estimate the relationship among CASP9 (rs1052576, rs1052571, rs4645978, rs4645981, rs4645982, rs2308950) and CASP10 (rs13006529, rs13010627, rs3900115) polymorphisms and the overall risk of cancers. Relevant studies were obtained from Web of Science, MEDLINE, PubMed, Scopus, and Google scholar databases (updated January 1, 2021). Odds ratio (OR) and 95% confidence intervals (CIs) were measured to estimate the strength of association. Our meta-analysis included 40 studies. The rs4645981 significantly enhanced the risk of cancer under TT vs. CC (OR = 2.42), TC vs. CC (OR = 1.55), TT+ TC vs. CC (OR = 1.66), TT vs. TC + CC (OR = 1.91), and T vs. C (OR = 1.57) inheritance models. As for the rs1052571 variant, increased risk of cancer was observed under TT vs. CC (OR =1.22), TC vs. CC (OR = 1.17), and TT+ TC vs. CC (OR = 1.18) models. The stratified analysis showed a significant correlation between rs4645978 or rs4645981 polymorphisms and cancer risk, while in Asians rs4645978 conferred an increased risk of colorectal, lung, and prostate cancer. Both rs4645981 and rs1052576 polymorphisms were correlated with an enhanced risk of lung cancer. In conclusion, our meta-analysis suggested that CASP9 rs4645981 and rs1052571 polymorphisms are associated with overall cancer risk. More studies on larger populations are warranted to validate these associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Cao, J.-L., Yuan, P., Abuduwufuer, A., Lv, W., Yang, Y.-H., & Hu, J. (2015). Association between the TERT genetic polymorphism rs2853676 and cancer risk: meta-analysis of 76 108 cases and 134 215 controls. PloS one., 10(6), e0128829.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics. A Cancer Journal for Clinicians., 70(1), 7–30.

    Article  Google Scholar 

  3. Bender, E. (2014). Developing world: Global warning: Much of the world is ill-equipped to cope with its rising cancer burden and are pushing prevention and screening. Nature, 509, 7502.

    Article  Google Scholar 

  4. Marahatta, S. B., Sharma, N., Koju, R., Makaju, R. K., Petmitr, P., & Petmitr, S. (2005). Cancer: Determinants and progression. Nepal Medical College journal, 7(1), 65–71.

    PubMed  Google Scholar 

  5. Park, J. Y., Park, J. M., Jang, J. S., Choi, J. E., Kim, K. M., Cha, S. I., Kim, C. H., Kang, Y. M., Lee, W. K., Kam, S., Park, R. W., Kim, I. S., Lee, J. T., & Jung, T. H. (2006). Caspase 9 promoter polymorphisms and risk of primary lung cancer. Human Molecular Genetics, 15(12), 1963–1971.

    Article  CAS  PubMed  Google Scholar 

  6. Qin, Q., Zhang, C., Zhu, H., Yang, X., Xu, L., Liu, J., Lu, J., Zhan, L., Cheng, H., & Sun, X. (2014). Association between survivin-31G> C polymorphism and cancer risk: Meta-analysis of 29 studies. Journal of Cancer Research and Clinical Oncology., 140(2), 179–188.

    Article  CAS  PubMed  Google Scholar 

  7. Hajra, K., & Liu, J. (2004). Apoptosome dysfunction in human cancer. Apoptosis., 9(6), 691–704.

    Article  CAS  PubMed  Google Scholar 

  8. Degterev, A., Boyce, M., & Yuan, J. (2003). A decade of caspases. Oncogene., 22(53), 8543–8567.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson, N. S., Dixit, V., & Ashkenazi, A. (2009). Death receptor signal transducers: Nodes of coordination in immune signaling networks. Nature Immunology., 10(4), 348–355.

    Article  CAS  PubMed  Google Scholar 

  10. Shen, X. G., Wang, C., Li, Y., Wang, L., Zhou, B., Xu, B., Jiang, X., Zhou, Z. G., & Sun, X. F. (2010). Downregulation of caspase-9 is a frequent event in patients with stage II colorectal cancer and correlates with poor clinical outcome. Colorectal Disease., 12(12), 1213–1218.

    Article  PubMed  Google Scholar 

  11. Shen, X.-G., Wang, C., Li, Y., Zhou, B., Xu, B., Yang, L., Zhou, Z. G., & Sun, X. F. (2011). Downregulation of caspase-10 predicting poor survival after resection of stage II colorectal cancer. International Journal of Colorectal Disease., 26(12), 1519–1524.

    Article  PubMed  Google Scholar 

  12. Grenet, J., Teitz, T., Wei, T., Valentine, V., & Kidd, V. J. (1999). Structure and chromosome localization of the human CASP8 gene. Gene., 226(2), 225–232.

    Article  CAS  PubMed  Google Scholar 

  13. Park, W. S., Lee, J. H., Shin, M. S., Park, J. Y., Kim, H. S., Lee, J. H., Kim, Y. S., Lee, S. N., Xiao, W., Park, C. H., Lee, S. H., Yoo, N. J., & Lee, J. Y. (2002). Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene., 21(18), 2919–2925.

    Article  CAS  PubMed  Google Scholar 

  14. Allan, L. A., & Clarke, P. R. (2009). Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. The FEBS Journal., 276(21), 6063–6073.

    Article  CAS  PubMed  Google Scholar 

  15. Liamarkopoulos, E., Gazouli, M., Aravantinos, G., Tzanakis, N., Theodoropoulos, G., Rizos, S., & Nikiteas, N. (2011). Caspase 8 and caspase 9 gene polymorphisms and susceptibility to gastric cancer. Gastric Cancer., 14(4), 317–321.

    Article  CAS  PubMed  Google Scholar 

  16. Fang, C.-Q., Liu, S. L., Lou, Y., & Li, J. H. (2007). Expression of the caspase 9 gene and its polymorphism distribution in gastric cancer. World Chinese Journal of Digestology., 15(30), 3190.

    CAS  Google Scholar 

  17. Lan, Q., Zheng, T., Chanock, S., Zhang, Y., Shen, M., Wang, S. S., Berndt, S. I., Zahm, S. H., Holford, T. R., Leaderer, B., Yeager, M., Welch, R., Hosgood, D., Boyle, P., & Rothman, N. (2007). Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis., 28(4), 823–827.

    Article  CAS  PubMed  Google Scholar 

  18. Lou, Y., Fang, C., & Li, J. (2007). A study on the expression of CASP9 gene and its polymorphism distribution in non-small cell lung cancer. Zhonghua yi xue yi Chuan xue za zhi= Zhonghua Yixue Yichuanxue Zazhi=. Chinese Journal of Medical Genetics, 24(1), 59–62.

    CAS  PubMed  Google Scholar 

  19. He, X., Wang, L., Fang, C., Liu, S., Lou, Y., & Li, J. (2008). Expression of CASP9 gene and its polymorphism distribution in colon cancer. Shijie Huaren Xiaohua Zazhi., 16, 2371–2375.

    CAS  Google Scholar 

  20. Hosgood III, H. D., Baris, D., Zhang, Y., Zhu, Y., Zheng, T., Yeager, M., Welch, R., Zahm, S., Chanock, S., Rothman, N., & Lan, Q. (2008). Caspase polymorphisms and genetic susceptibility to multiple myeloma. Hematological oncology., 26(3), 148–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ulybina, Y. M., Kuligina, E. S., Mitiushkina, N. V., Rozanov, M. E., Ivantsov, A. O., Ponomariova, D. N., Togo, A. V., Levchenko, E. V., Shutkin, V. A., Brenister, S. I., Devilee, P., Zhivotovsky, B., Hirvonen, A., & Imyanitov, E. N. (2009). Coding polymorphisms in Casp5, Casp8 and DR4 genes may play a role in predisposition to lung cancer. Cancer letters., 278(2), 183–191.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, H., Yang, Z., Xie, Y., Kuang, Z., Luo, X., Liang, A., et al. (2009). Correlation between DNA repair gene XRCC1 Arg280His polymorphism and susceptibility to hepatocellular carcinoma in Fusui county of Guangxi. China Journal of Modern Medicine., 19(18), 2737–2743.

    CAS  Google Scholar 

  23. Ulybina, Y. M., Kuligina, E. S., Mitiushkina, N. V., Sherina, N. Y., Baholdin, D. V., Voskresenskiy, D. A., Polyakov, I. S., Togo, A. V., Semiglazov, V. F., & Imyanitov, E. N. (2011). Distribution of coding apoptotic gene polymorphisms in women with extreme phenotypes of breast cancer predisposition and tolerance. Tumori Journal., 97(2), 248–251.

    Article  PubMed  Google Scholar 

  24. Cingeetham, A., Vuree, S., Dunna, N. R., Gorre, M., Nanchari, S. R., Edathara, P. M., Mekkaw, P., Annamaneni, S., Digumarthi, R. R., Sinha, S., & Satti, V. (2014). Association of caspase9 promoter polymorphisms with the susceptibility of AML in south Indian subjects. Tumor Biology., 35(9), 8813–8822.

    Article  CAS  PubMed  Google Scholar 

  25. Ozdogan, S., Kafadar, A., Yilmaz, S. G., Timirci-Kahraman, O., Gormus, U., & Isbir, T. (2017). Role of caspase-9 gene Ex5+ 32 G> A (rs1052576) variant in susceptibility to primary brain tumors. Anticancer Research., 37(9), 4997–5000.

    CAS  PubMed  Google Scholar 

  26. Yilmaz, S. G., Yencilek, F., Yildirim, A., Yencilek, E., & Isbir, T. (2017). Effects of caspase 9 gene polymorphism in patients with prostate cancer. International Institute of Anticancer Research., 31(2), 205–208.

  27. Ercan, S., Arinc, S., Yilmaz, S. G., Altunok, C., Yaman, F., & Isbir, T. (2019). Investigation of caspase 9 gene polymorphism in patients with non-small cell lung cancer. Anticancer Research., 39(5), 2437–2441.

    Article  CAS  PubMed  Google Scholar 

  28. Edathara, P. M., Gorre, M., Kagita, S., Cingeetham, A., Annamaneni, S., Digumarti, R., et al. (2019). Influence of Caspase-9 polymorphisms on the development of chronic myeloid leukemia-a case-control study. Gene X., 1, 100002.

    CAS  Google Scholar 

  29. Lavender, N. A., Rogers, E. N., Yeyeodu, S., Rudd, J., Hu, T., Zhang, J., et al. (2012). Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer. BMC Medical Genomics., 5(1), 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azevedo, A. P., Silva, S. N., Reichert, A., Lima, F., Júnior, E., & Rueff, J. (2019). The role of caspase genes polymorphisms in genetic susceptibility to philadelphia-negative myeloproliferative neoplasms in a Portuguese population. Pathology & Oncology Research., 25(3), 961–969.

    Article  CAS  Google Scholar 

  31. Gangwar, R., Mandhani, A., & Mittal, R. D. (2009). Caspase 9 and caspase 8 gene polymorphisms and susceptibility to bladder cancer in North Indian population. Annals of Surgical Oncology., 16(7), 2028–2034.

    Article  PubMed  Google Scholar 

  32. Theodoropoulos, G. E., Michalopoulos, N. V., Panoussopoulos, S.-G., Taka, S., & Gazouli, M. (2010). Effects of caspase-9 and survivin gene polymorphisms in pancreatic cancer risk and tumor characteristics. Pancreas., 39(7), 976–980.

    Article  CAS  PubMed  Google Scholar 

  33. Kesarwani, P., Mandal, R. K., Maheshwari, R., & Mittal, R. D. (2011). Influence of caspases 8 and 9 gene promoter polymorphism on prostate cancer susceptibility and early development of hormone refractory prostate cancer. BJU international., 107(3), 471–476.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, S. Y., Choi, Y. Y., Choi, J. E., Kim, M. J., Kim, J.-S., Jung, D. K., Kang, H. G., Jeon, H. S., Lee, W. K., Jin, G., Cha, S. I., Kim, C. H., Jung, T. H., & Park, J. Y. (2010). Polymorphisms in the caspase genes and the risk of lung cancer. Journal of Thoracic Oncology., 5(8), 1152–1158.

    Article  PubMed  Google Scholar 

  35. Theodoropoulos, G. E., Gazouli, M., Vaiopoulou, A., Leandrou, M., Nikouli, S., Vassou, E., Kouraklis, G., & Nikiteas, N. (2011). Polymorphisms of caspase 8 and caspase 9 gene and colorectal cancer susceptibility and prognosis. International Journal of Colorectal Disease., 26(9), 1113–1118.

    Article  PubMed  Google Scholar 

  36. Theodoropoulos, G. E., Michalopoulos, N. V., Pantou, M. P., Kontogianni, P., Gazouli, M., Karantanos, T., Lymperi, M., & Zografos, G. C. (2012). Caspase 9 promoter polymorphisms confer increased susceptibility to breast cancer. Cancer Genetics., 205(10), 508–512.

    Article  CAS  PubMed  Google Scholar 

  37. George, G. P., Mandal, R. K., Kesarwani, P., Sankhwar, S. N., Mandhani, A., & Mittal, R. D. (2012). Polymorphisms and haplotypes in caspases 8 and 9 genes and risk for prostate cancer: A case–control study in cohort of North India. Urologic Oncology: Seminars and Original Investigations.

  38. Wang, Y.-X., Zhao, L., Wang, X.-Y., Liu, C.-M., & Yu, S.-G. (2012). Role of Caspase 8, Caspase 9 and Bcl-2 polymorphisms in papillary thyroid carcinoma risk in Han Chinese population. Medical Oncology., 29(4), 2445–2451.

    Article  CAS  PubMed  Google Scholar 

  39. Wu, Z., Li, Y., Li, S., Zhu, L., Li, G., Yu, Z., Zhao, X., Ge, J., Cui, B., Dong, X., Tian, S., Hu, F., & Zhao, Y. (2013). Association between main Caspase gene polymorphisms and the susceptibility and prognosis of colorectal cancer. Medical Oncology., 30(3), 565.

    Article  PubMed  Google Scholar 

  40. Costa, E. F. D., Lopes-Aguiar, L., Nogueira, G. S., Lima, T. R. P., Rinck-Junior, J. A., Lourenço, G. J., & Lima, C. S. P. (2019). CASP9 c.-1339A> G and CASP3 c.-1191A> G polymorphisms alter susceptibility and clinical aspects of head and neck squamous cell carcinoma. Head & Neck., 41(8), 2665–2670.

    Google Scholar 

  41. Altamemi, I. A., Aubaid, A. H., & Hussein, T. A. (2020). Role of IL-18 and caspas-9 polymorphism in disease susceptibility in prostate cancer. EurAsian Journal of BioSciences., 14, 671–676.

    CAS  Google Scholar 

  42. Cao, S., Wang, C., Huang, X., Dai, J., Hu, L., Liu, Y., Chen, J., Ma, H., Jin, G., Hu, Z., Xu, L., & Shen, H. (2013). Prognostic assessment of apoptotic gene polymorphisms in non-small cell lung cancer in Chinese. Journal of Biomedical Research., 27(3), 231–238.

    PubMed  PubMed Central  Google Scholar 

  43. Javid, J., Mir, R., Masroor, M., Farooq, S., & Ahamad, I. (2013). Biological and clinical implications of functional promoter polymorphism of CASPASE 9 gene in non small cell lung cancer patients. J Mol Biomark Diagn S., 8, 007.

    Google Scholar 

  44. Ghasemi, M., Hoseini, V., Alizadeh, A., & Farzad, F. (2013). Caspase 9 promoter polymorphisms in gastric cancer, Mazandaran Province. Journal of Mazandaran University of Medical Sciences., 23(98), 2–7.

    Google Scholar 

  45. Frank, B., Hemminki, K., Wappenschmidt, B., Meindl, A., Klaes, R., Schmutzler, R. K., Bugert, P., Untch, M., Bartram, C. R., & Burwinkel, B. (2006). Association of the CASP10 V410I variant with reduced familial breast cancer risk and interaction with the CASP8 D302H variant. Carcinogenesis., 27(3), 606–609.

    Article  CAS  PubMed  Google Scholar 

  46. Gaudet, M. M., Milne, R. L., Cox, A., Camp, N. J., Goode, E. L., Humphreys, M. K., Dunning, A. M., Morrison, J., & Giles, G. G. (2009). Five polymorphisms and breast cancer risk: Results from the Breast Cancer Association Consortium. Cancer Epidemiology and Prevention Biomarkers., 18(5), 1610–1616.

    Article  CAS  Google Scholar 

  47. Meyer, A., Coinac, I., Bogdanova, N., Dubrowinskaja, N., Turmanov, N., Haubold, S., et al. (2013). Apoptosis gene polymorphisms and risk of prostate cancer: A hospital-based study of German patients treated with brachytherapy. Urologic Oncology: Seminars and Original Investigations.

  48. MacPherson, G., Healey, C. S., Teare, M. D., Balasubramanian, S. P., Reed, M. W., Pharoah, P. D., et al. (2004). Association of a common variant of the CASP8 gene with reduced risk of breast cancer. Journal of the National Cancer Institute., 96(24), 1866–1869.

    Article  CAS  PubMed  Google Scholar 

  49. Li, C., Zhao, H., Hu, Z., Liu, Z., Wang, L. E., Gershenwald, J. E., Prieto, V. G., Lee, J. E., Duvic, M., Grimm, E. A., & Wei, Q. (2008). Genetic variants and haplotypes of the caspase-8 and caspase-10 genes contribute to susceptibility to cutaneous melanoma. Human Mutation., 29(12), 1443–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arnaout, H. H., Khorshied, M. M., Khorshid, O. M. R., & El-Nagdy, M. H. (2012). Association of caspase 8 and caspase 10 genetic polymorphisms with B-cell non Hodgkin ' s lymphoma in Egypt: A case-control study. Journal of Cancer Science and Theraphy., 4, 249–253.

    CAS  Google Scholar 

  51. Ye, Y. (2004). Polymorphisms of caspase-8,-10 genes and their relationship with pathogenesis of non-Hodgkin lymphoma. Zhejiang University.

  52. Liu, H., Jiang, X., Zhang, M. W., Pan, Y. F., Yu, Y. X., Zhang, S. C., et al. (2013). Association of CASP9, CASP10 gene polymorphisms and tea drinking with colorectal cancer risk in the Han Chinese population. Journal of Zhejiang University SCIENCE B., 14(1), 47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cavalcante, G. C., de Moraes, M. R., Valente, C. M. D., Silva, C. S., Modesto, A. A. C., de Assumpção, P. B., et al. (2020). Investigation of INDEL variants in apoptosis: The relevance to gastric cancer. BMC Medical Genetics., 21(1), 1–6.

    Article  Google Scholar 

  54. He, J., Liao, X.-Y., Zhu, J.-H., Xue, W.-Q., Shen, G.-P., Huang, S.-Y., et al. (2014). Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: Evidence from a meta-analysis. Scientific Reports., 4(1), 1–9.

    Article  Google Scholar 

  55. Martorell-Marugan, J., Toro-Dominguez, D., Alarcon-Riquelme, M. E., & Carmona-Saez, P. (2017). MetaGenyo: A web tool for meta-analysis of genetic association studies. BMC Bioinformatics., 18(1), 563.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brok, J., Thorlund, K., Gluud, C., & Wetterslev, J. (2008). Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. Journal of Clinical Epidemiology, 61(8), 763–769.

    Article  PubMed  Google Scholar 

  57. Fu, W., Zhuo, Z.-J., Chen, Y.-C., Zhu, J., Zhao, Z., Jia, W., Hu, J. H., Fu, K., Zhu, S. B., He, J., & Liu, G. C. (2017). NFKB1-94insertion/deletion ATTG polymorphism and cancer risk: Evidence from 50 case-control studies. Oncotarge., 8(6), 9806–9822.

    Article  Google Scholar 

  58. Heredia-Galvez, B., Ruiz-Cosano, J., Torres-Moreno, D., Español, I., Morales-Lara, M. J., Pérez-Ceballos, E., González-Conejero, R., Gutiérrez-Cívicos, R., Vicente, V., Pérez-Guillermo, M., & Conesa-Zamora, P. (2014). Association of polymorphisms in TRAIL1 and TRAILR1 genes with susceptibility to lymphomas. Annals of Hematology., 93(2), 243–247.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, E. B., Jeon, H.-S., Yoo, S. S., Choi, Y. Y., Kang, H.-G., Cho, S., Cha, S. I., Choi, J. E., Park, T. I., Lee, B. H., Park, R. W., Kim, I. S., Kang, Y. M., Kim, C. H., Jheon, S., Jung, T. H., & Park, J. Y. (2010). Polymorphisms in apoptosis-related genes and survival of patients with early-stage non-small-cell lung cancer. Annals of Surgical Oncology., 17(10), 2608–2618.

    Article  PubMed  Google Scholar 

  60. Kiraz, Y., Adan, A., Yandim, M. K., & Baran, Y. (2016). Major apoptotic mechanisms and genes involved in apoptosis. Tumor Biology., 37(7), 8471–8486.

    Article  CAS  PubMed  Google Scholar 

  61. Yu, J., & Zhang, L. (2004). Apoptosis in human cancer cells. Current Opinion in Oncology., 16(1), 19–24.

    Article  PubMed  Google Scholar 

  62. Mohr, A., Deedigan, L., Jencz, S., Mehrabadi, Y., Houlden, L., Albarenque, S.-M., & Zwacka, R. M. (2018). Caspase-10: A molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment. Cell Death & Differentiation., 25(2), 340–352.

    Article  CAS  Google Scholar 

  63. Lou, G.-G., Yao, H.-P., & Xie, L.-P. (2010). Brucea javanica oil induces apoptosis in T24 bladder cancer cells via upregulation of caspase-3, caspase-9, and inhibition of NF-κB and COX-2 expressions. The American Journal of Chinese Medicine., 38(03), 613–624.

    Article  PubMed  Google Scholar 

  64. Wu, G. S., & Ding, Z. (2002). Caspase 9 is required for p53-dependent apoptosis and chemosensitivity in a human ovarian cancer cell line. Oncogene., 21(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  65. Mueller, T., Voigt, W., Simon, H., Fruehauf, A., Bulankin, A., Grothey, A., & Schmoll, H. J. (2003). Failure of activation of caspase-9 induces a higher threshold for apoptosis and cisplatin resistance in testicular cancer. Cancer Research., 63(2), 513–521.

    CAS  PubMed  Google Scholar 

  66. Horn, S., Hughes, M. A., Schilling, R., Sticht, C., Tenev, T., Ploesser, M., Meier, P., Sprick, M. R., MacFarlane, M., & Leverkus, M. (2017). Caspase-10 negatively regulates Caspase-8-mediated cell death, switching the response to CD95L in favor of NF-κB activation and cell survival. Cell Reports., 19(4), 785–797.

    Article  CAS  PubMed  Google Scholar 

  67. Engels, I. H., Totzke, G., Fischer, U., Schulze-Osthoff, K., & Jänicke, R. U. (2005). Caspase-10 sensitizes breast carcinoma cells to TRAIL-induced but not tumor necrosis factor-induced apoptosis in a caspase-3-dependent manner. Molecular and Cellular Biology., 25(7), 2808–2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hashemi, M., Aftabi, S., Moazeni-Roodi, A., Sarani, H., Wiechec, E., & Ghavami, S. (2020). Association of CASP8 polymorphisms and cancer susceptibility: A meta-analysis. European Journal of Pharmacology., 173201.

  69. Liu, C. Y., Wu, M. C., Chen, F., Ter-Minassian, M., Asomaning, K., Zhai, R., et al. (2010). A large-scale genetic association study of esophageal adenocarcinoma risk. Carcinogenesis., 31(7), 1259–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kelly, J. L., Novak, A. J., Fredericksen, Z. S., Liebow, M., Ansell, S. M., Dogan, A., Wang, A. H., Witzig, T. E., Call, T. G., Kay, N. E., Habermann, T. M., Slager, S. L., & Cerhan, J. R. (2010). Germline variation in apoptosis pathway genes and risk of non-Hodgkin ' s lymphoma. Cancer Epidemiology and Prevention Biomarkers., 19(11), 2847–2858.

    Article  CAS  Google Scholar 

  71. Goehe, R. W., Shultz, J. C., Murudkar, C., Usanovic, S., Lamour, N. F., Massey, D. H., Zhang, L., Camidge, D. R., Shay, J. W., Minna, J. D., & Chalfant, C. E. (2010). hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. The Journal of Clinical Investigation., 120(11), 3923–3939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kwon, M., Yim, S., Kim, G., Lee, S., Jeong, C., & Lee, D. (2019). CODA-ML: Context-specific biological knowledge representation for systemic physiology analysis. BMC Bioinformatics., 20(10), 248.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Reviews Cancer., 2(6), 420–430.

    Article  CAS  PubMed  Google Scholar 

  74. Milhas, D., Cuvillier, O., Therville, N., Clavé, P., Thomsen, M., Levade, T., Benoist, H., & Ségui, B. (2005). Caspase-10 triggers bid cleavage and caspase cascade activation in FasL-induced apoptosis. Journal of Biological Chemistry., 280(20), 19836–19842.

    Article  CAS  Google Scholar 

  75. Yan, S., Li, Y.-Z., Zhu, X.-W., Liu, C.-L., Wang, P., & Liu, Y.-L. (2013). Role of the CASP-9 Ex5+ 32 G> A polymorphism in susceptibility to cancer: A meta-analysis. Experimental and Therapeutic Medicine., 5(1), 175–180.

    Article  CAS  PubMed  Google Scholar 

  76. Xu, W., Jiang, S., Xu, Y., Chen, B., Li, Y., Zong, F., Zhao, W., & Wu, J. (2012). A meta-analysis of caspase 9 polymorphisms in promoter and exon sequence on cancer susceptibility. PLoS One., 7(5), e37443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan, S., Li, Y., Zhu, J., Liu, C., Wang, P., & Liu, Y. (2012). Role of CASP-10 gene polymorphisms in cancer susceptibility: A HuGE review and meta-analysis. Genetology Molecular Research., 11(4), 3998–4007.

    Article  CAS  Google Scholar 

  78. Reed, J. C. (1999). Dysregulation of apoptosis in cancer. Journal of Clinical Oncology, 17(9), 2941.

    Article  CAS  PubMed  Google Scholar 

  79. Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., Bus, C. J., Kadkhoda, K., Wiechec, E., Halayko, A. J., & Los, M. (2009). Apoptosis and cancer: Mutations within caspase genes. Journal of Medical Genetics., 46(8), 497–510.

    Article  CAS  PubMed  Google Scholar 

  80. Hashemi, M., Moazeni-Roodi, A., & Ghavami, S. (2019). Association between CASP3 polymorphisms and overall cancer risk: A meta-analysis of case–control studies. Journal of Cellular Biochemistry., 120(5), 7199–7210.

    Article  CAS  Google Scholar 

  81. Yan, S., Li, Y., Zhu, X., Liu, C., Wang, P., & Liu, Y. (2013). HuGE systematic review and meta-analysis demonstrate association of CASP-3 and CASP-7 genetic polymorphisms with cancer risk. Genetology Molecular Research., 12(2), 1561–1573.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saman Sargazi or Ebrahim Eskandari.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake in the captions of figures 1 and 2. The captions of figures 1 and 2 were interchanged.

Supplementary Information

ESM 1

(DOCX 17 kb)

Supplementary Table 1 Information of the studied polymorphisms

Supplementary Table 2 Main characteristics of the studies included in the meta-analysis

ESM 2

(DOCX 217 kb)

Supplementary Fig. 1 Trial sequential analysis of 10 studies reporting CASP9 rs4645978 and rs1052576 polymorphisms. The criteria for measuring the required information size were: α = 0.05 (two-sided), β = 0.20 (power 80%), D2 = 57.0%, a relative risk increase of 10%, and an event proportion of 38.02% in the control arm. The blue cumulative Z-curve was generated by a random-effects model

Supplementary Fig. 2 Trial sequential analysis of 10 studies reporting CASP9 rs1052571 and rs4645981 polymorphisms. The criteria for measuring the required information size were α = 0.05 (two-sided), β = 0.20 (power 80%), D2 = 57.0%, a relative risk increase of 10%, and an event proportion of 38.02% in the control arm. The blue cumulative Z-curve was constructed using a random-effects model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargazi, S., Abghari, A.Z., Sarani, H. et al. Relationship Between CASP9 and CASP10 Gene Polymorphisms and Cancer Susceptibility: Evidence from an Updated Meta-analysis. Appl Biochem Biotechnol 193, 4172–4196 (2021). https://doi.org/10.1007/s12010-021-03613-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03613-w

Keywords

Navigation