Skip to main content
Log in

Microbial Concrete—a Sustainable Solution for Concrete Construction

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the ever-increasing demand of construction and construction materials worldwide, concrete is the most extensively used material for construction purposes almost next to the water. Therefore, there is a dire need of clean, green and durable concrete. Recently, an environmentally friendly strategy has been employed to manufacture bio-concrete by the usage of microorganisms in the traditional concrete to enhance its durability and compressive strength. In this review, we discuss the role of microbes in influencing the various properties of concrete such as compressive strength, flexural strength and tensile strength by reducing the concrete porosity and diminishing water absorption. The mechanism of microbial-induced calcium carbonate precipitation (MICP) in the traditional concrete by the action of microbes which resulted in the formation of bio-concrete as an improved building material has also been discussed. Additionally, an in-depth comparative analysis of the performance of bio-concrete with the traditional concrete synthesized from various industrial wastes such as silica fume, rice husk ash and metakaolin in terms of different properties such as compressive strength, flexural strength and percentage water absorption has been presented. This review highlights the impact of usage of microbes in the conventional concrete to produce novel and eco-friendly bio-concrete in construction technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Yes

References

  1. Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, properties and materials (4th ed.). McGraw-Hill Education Publishers.

  2. Zain, M. F. M., Islam, M. N., Mahmud, F., & Jamil, M. (2011). Production of rice husk ash for use in concrete as a supplementary cementitious material. Construction and Building Materials, 25(2), 798–805.

    Article  Google Scholar 

  3. Kishore, R., & Bhikshma, V. (2011). Prakash PJ. Procedia Engineer, 14, 2666–2672.

    Article  CAS  Google Scholar 

  4. Ephraim, M., Akeke, G. A., & Ukpata, J. O. (2012). Scholarly Journal of Engineering Research, 1(2), 32–36.

    Google Scholar 

  5. Velu, S., & Song, H. W. (2007). Construction and Building Materials, 21(8), 1779–1784.

    Article  Google Scholar 

  6. Siddique, R. (2003). Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cement and Concrete Research, 33(4), 539–547.

    Article  CAS  Google Scholar 

  7. Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composites, 22(6), 399–406.

    Article  CAS  Google Scholar 

  8. Brooks, J. J., & Johari, M. A. M. (2001). Effect of metakaolin on creep and shrinkage of concrete. Cement & Concrete Composites, 23(6), 495–502.

    Article  CAS  Google Scholar 

  9. Rafat, S., Vasu, M., Kunal El-H, K. M. I. K., Malkit, S., & Anita, R. (2016). Constr. Build. Mater., 106, 416–469.

    Google Scholar 

  10. Hank, M. J., Arjan, T., Gerard, M., Oguzham, C., & Erikk, S. (2010). Ecological Engineering, 36, 230–235.

    Article  Google Scholar 

  11. Periasamy, A., Chang-Ho, K., Yu-Jin, S., & Jae-Seong, S. (2016). SpringerPlus, 5, 250 1-26.

    Article  Google Scholar 

  12. Maria, J. C.-A., Em-H, L., Maria, A. S.-M., Mariel, R. M. F., Rajeswari, N., & Nagamani, B. (2019). Frontiers in Materials, 6, 126 1-15.

    Article  Google Scholar 

  13. Hasanbeigi, A., Price, L., & Lin, E. (2012). Renewable and Sustainable Energy Reviews, 16(8), 6220–6238.

    Article  CAS  Google Scholar 

  14. Shen, L., Gao, T., Zhao, J., Wang, L., Liu, L., Chen, F., & Xue, J. (2014). Factory-level measurements on CO2 emission factors of cement production in China. Renewable and Sustainable Energy Reviews, 34, 337–349.

    Article  CAS  Google Scholar 

  15. Akashia, O., Hanaokaa, Matsuokab, Y., & Kainuma, M. (2011). Energy, 36(4), 1855–1867.

    Article  Google Scholar 

  16. Rubenstein M.. (2012). Emissions from the cement industry, The Earth Institute of Columbia University,:〈http://blogs.ei.columbia.edu/2012/05/09/emissions-fromthe-cement-industry/〉

  17. Dejong, J. T., Fritzges, M. B., & Nusslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenviromental Engineering, 132(11), 1381–1392.

    Article  CAS  Google Scholar 

  18. Stabnikov, V., Naeimi, M., Ivanov, V., & Chu, J. (2011). Formation of water-impermeable crust on sand surface using biocement. Cement and Concrete Research, 41(11), 1143–1149.

    Article  CAS  Google Scholar 

  19. Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2014). Appl. Bio-chemistry Biotechnology, 172, 2552–2561.

    CAS  Google Scholar 

  20. Chahal, N., Siddique, R., & Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Construction and Building Materials, 28(1), 351–356.

    Article  Google Scholar 

  21. Achal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352–1358.

    Article  CAS  PubMed  Google Scholar 

  22. Bosak, T. (2011). Microbially induced calcite precipitation (pp. 223–227). Encyclopedia of Geobiology series. Springer.

  23. Vijay, K., Murmu, M., & Deo, S. V. (2017). Bacteria based self healing concrete – A review. Construction and Building Materials, 152, 1008–1014.

    Article  CAS  Google Scholar 

  24. Tittelboom, K. V., De Belie, N., De Muynck, W., & Verstraete, W. (2010). Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40(1), 157–166.

    Article  Google Scholar 

  25. De Belie, N. (2016). RILEM Technical Letters, 1, 56–61.

    Article  Google Scholar 

  26. Muynck, W. D., De Belie, N., & Verstraete, W. (2010). Ecological Engineering, 36, 118–136.

    Article  Google Scholar 

  27. Qbany, A. A., Soga, K., ASCE, M., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenviromental Engineering, 138(8), 992–1001.

    Article  Google Scholar 

  28. Kumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Advances in Applied Microbiology, 94, 79–108.

    Article  CAS  PubMed  Google Scholar 

  29. Qian, C., Wang, R., Cheng, L., & Wang, J. (2010). Theory of Microbial Carbonate Precipitation and Its Application in Restoration of Cement-based Materials Defects. Chinese Journal of Chemistry, 28(5), 847–857.

    Article  CAS  Google Scholar 

  30. Shinano, H. (1972). Bulletin of the Japanese Society of Scientific Fisheries, 38, 717–725.

    Article  Google Scholar 

  31. Balam, N. H., Mostofinejad, D., & Eftekhar, M. (2017). Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials, 145, 107–116.

    Article  Google Scholar 

  32. Nosouhian, F., Mostofinejad, D., & Hasheminejad, H. (2016). J. Mater. Civ. Eng. ASCE, 28(1), 0001337.040150641-12.

    Article  Google Scholar 

  33. Mathur, S., Bhatt, A., & Patel, R. (2018). Annals of Biological Research, 9(1), 7–17.

    CAS  Google Scholar 

  34. Wang, J., Ersan, Y. C., Boon, N., & De Belie, N. (2016). Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Applied Microbiology and Biotechnology, 100(7), 2993–3007.

    Article  CAS  PubMed  Google Scholar 

  35. Seifan, M., Samani, A. K., & Berenjian, A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142.

    Article  CAS  PubMed  Google Scholar 

  36. Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230–235.

    Article  Google Scholar 

  37. Basaran ZB, Kirisits MJ, Ferron RD (2013). Ph.D. thesis. The University of Texas at Austin.

  38. Kumar, R., Sharma, A., Dhall, P., Kulshreshtha, N., & Kumar, A. (2011). World Academy of Science, Engineering and Technology, 76, 503–506.

    Google Scholar 

  39. Da Silva, F. B., De Belie, N., Boon, N., & Verstraete, W. (2015). Constr. Build. Mater., 93, 1034–1041.

    Article  Google Scholar 

  40. Jadhav, U. U., Lahoti, M., Chen, Z., Qiu, J., Cao, B., & Yang, E. H. (2018). Viability of bacterial spores and crack healing in bacteria-containing geopolymer. Construction and Building Materials, 169, 716–723.

    Article  CAS  Google Scholar 

  41. Bang, S. S., Galimat, J. K., & Ramakrishan, V. (2001). Enzyme Microb. Technol., 28(4–5), 404–409.

    CAS  Google Scholar 

  42. Wang, J. Y., Snoeck, D., Vlierberghe, S. V., Verstraete, W., & De Belie, N. (2014a). Construction and Building Materials, 68, 110–119.

    Article  Google Scholar 

  43. Lee, Y. S., Kim, H. J., & Park, W. (2017). Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus. Journal of Microbiology, 55(6), 440–447.

    Article  CAS  Google Scholar 

  44. Albert Jr., A. G., Ma. Klarissa, M. D., & Jason, M. C. O. (2020). Applied Sciences, 10,5161, 1–18.

    Google Scholar 

  45. Li, L., Zheng, Q., Li, Z., Ashour, A., & Han, B. (2019). Bacterial technology-enabled cementitious composites: a review. Composite Structures, 111170.

  46. Khaliq, W., & Ehsan, M. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349–357.

    Article  CAS  Google Scholar 

  47. Shradha, J., Bidyadhar, B., & Kishore, C. P. (2020). IOP Conf, Series : Mater. Sci. Eng, 970(2020), 012004.

    Google Scholar 

  48. Yousaf, A.-S., Hadi, S., Abbas, S., Tarek, A., & Moslem, M. A. (2017). Construction and Building Materials, 154, 857–876.

    Article  Google Scholar 

  49. Hewlett, P. C., et al. (1990). Proceedings of international conference: Protection of concrete (pp. 105–134). Scotland.

  50. Adolphe JP, Loubiere JF, Paradas J (1989) Soleilhavoup F Proce´de´ de traitementbiologiqued’une surface artificielle.

  51. Whiffin, V. S., Paassen, L. A. V., & Harkes, M. P. (2007). Geo. Microbial., 24, 417–423.

    CAS  Google Scholar 

  52. Dick J, De Windt W, De Graef B, Saveyn H, Meeren PVD, De Belie N, Verstraete W (2006). Biodegradation

  53. Ramakrishnan V (2007). In: Proceedings of the first international conference on recent advances in concrete technology. Washington, DC: 67–78

  54. Siddique, R., & Chahal, N. (2011). Effect of ureolytic bacteria on concrete properties. Construction and Building Materials, 25(10), 3791–3801.

    Article  Google Scholar 

  55. Vashisht, R., Attri, S., Sharma, D., Shukla, A., & Goel, G. (2018). Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Microbiological., 207, 226–231.

    Article  CAS  Google Scholar 

  56. Chaursia, L., Bisht, V., Singh, L. P., & Gupta, S. (2019). A novel approach of biomineralization for improving micro and macro-properties of concrete. Construction and Building Materials, 195, 340–351.

    Article  Google Scholar 

  57. Ramakrishnan V, Ramesh K.P., Bang S.S. (2001) Bacterial concrete. Proceedings of SPIE . Vol. 4234.

  58. Afifudin, H., Nadzarah, W., Hamidah, M. S., & Hana, H. N. (2011). Microbial Participation in the Formation of Calcium Silicate Hydrated (CSH) from Bacillus subtilis. Procedia Engineering, 20, 159–165.

    Article  CAS  Google Scholar 

  59. Siddique, R., Jameel, A., Singh, M., Barnat-Hunek, D., Kunal, M. A., Belarbi, R., & Rajor, A. (2017). Construction and Building Materials, 142, 92–100.

    Article  CAS  Google Scholar 

  60. Achal, V., Pan, X., & Oûzyurt, N. (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37(4), 554–559.

    Article  Google Scholar 

  61. Nosouhian, F., Mostofinejad, D., & Hasheminejad, H. (2015). Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosystems Engineering, 133, 141–152.

    Article  Google Scholar 

  62. Siddique, R., Nanda, V., Kunal, K. E. H., Khan, H. I., Singh, M., & Rajore, A. (2016). Construction and Building Materials, 106, 461–469.

    Article  CAS  Google Scholar 

  63. Joshi, S., Goyal, S., & Reddy, M. S. (2018). Influence of nutrient components of media on structural properties of concrete during biocementation. Construction and Building Materials, 158, 601–613.

    Article  CAS  Google Scholar 

  64. Reddy, S. V. B., & Ravikiran, A. (2018). International Journal of Applied Engineering Research, 13(15), 11857–11870.

    Google Scholar 

  65. Mondal, S., & Ghosh, A. D. (2019). Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Construction and Building Materials, 225, 67–75.

    Article  CAS  Google Scholar 

  66. Sierra-Beltran, M. G., Jonkers, H. M., & Schlangen, E. (2014). Characterization of sustainable bio-based mortar for concrete repair. Construction and Building Materials, 67, 344–352.

    Article  Google Scholar 

  67. Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). ACI Mater. J., 98, 3–9.

    CAS  Google Scholar 

  68. Wang, J. Y., Soens, H., & Verstraete, W. (2014b). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152.

    Article  CAS  Google Scholar 

  69. De Muynck, W., Cox, K., De Belie, N., & Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. J. Cem. Concr. Res., 38(7), 1005–1014.

    Article  Google Scholar 

  70. Xu, J., Yao, W., & Jiang, Z. (2014). Non-Ureolytic Bacterial Carbonate Precipitation as a Surface Treatment Strategy on Cementitious Materials. Journal of Materials in Civil Engineering, 26(5), 983–991.

    Article  CAS  Google Scholar 

  71. Qian, C. X., Wang, J., Wang, R., & Liang, C. (2009). Mater. Sci. Eng. C, 29, 1273–1280.

    Article  CAS  Google Scholar 

  72. Dhir RK, Dyer TD, Halliday JE (2002). Proceedings of the International Conference held at the University of Dundee. Scotland, UK.

  73. Nemati, M., Greene, E. A., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. Process Biochemistry, 40(2), 925–933.

    Article  CAS  Google Scholar 

  74. De Muyunck, W., Debrouwer, D., De Belie, N., & Verstraete, W. (2008). Cem Concr. Res., 38, 1005–1014.

    Article  Google Scholar 

  75. Farshad, A., Parham, S., Nasrollah, B., Mohammadsadegh, V., & Togay, O. (2019). Construction and Building Materials, 222, 796–813.

    Article  Google Scholar 

  76. Navneet C, Rafat S, Anita R, (2012). Constr. Build. Mater. 28 : 385 ELSEVIER, 950-618.

  77. Kota, K. P., Kota, R. K., Dulla, J. B., & Karlapudi, A. P. (2014). Int. J. Pharm. Sci. Rev. Res., 25(52), 276–279.

    CAS  Google Scholar 

  78. Ponraj, M., Talaiekhozani, A., Zin, R. M., Ismail, M., Abd Majid, M. Z., Keyvanfar, A., & Kamyab, H. (2015). Proc. of the Third Intl. Conf. Advances in Civil. Structural and Mechanical Engineering- CSM, 2015, 1–9.

    Google Scholar 

  79. Joshi S, Goyal S, Mukherjee A, Reddy MS (2017). J Ind Microbiol Biotechnol :1-15.

  80. Achal, V., & Pan, X. (2014). Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp. CR2. Applied Biochemistry and Biotechnology, 173(1), 307–317.

    Article  CAS  PubMed  Google Scholar 

  81. Parampreet, K., Varinder, S., & Amit, A. (2019). Pollution Research, 38, S266–S168.

    Google Scholar 

  82. Parampreet K, Varinder S, Amit Arora, Sidhant C (2017) 4th National Conference on FMRA-2017: 3- 4.

  83. Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Appl Biochem Biotechnol, 172(5), 2308–2323.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The free flow and exchange of ideas between Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India and Shaheed Bhagat Singh State University, Ferozepur, Punjab, India, is highly acknowledged for bringing this paper in present form.

Author information

Authors and Affiliations

Authors

Contributions

Equal

Corresponding author

Correspondence to Parampreet Kaur.

Ethics declarations

There is no involvement of any type of Human Participation and/or Animals in this research. This is not clinical type of research informed consent was not required.

Ethics Approval

Not required

Consent to Participate

Yes

Consent for Publication

Yes

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Bacterial treatment increased the compressive strength of concrete.

2. Addition of Bacteria decreased the water absorption making concrete more durable.

3. Chloride penetration decreased in concrete when bacteria was induced.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Singh, V. & Arora, A. Microbial Concrete—a Sustainable Solution for Concrete Construction. Appl Biochem Biotechnol 194, 1401–1416 (2022). https://doi.org/10.1007/s12010-021-03604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03604-x

Keywords

Navigation