Skip to main content

Advertisement

Log in

Towards an Understanding of Oxidative Damage in an α-L-Arabinofuranosidase of Trichoderma reesei: a Molecular Dynamics Approach

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Trichoderma reesei is a “workhorse” fungus that produces glycosyl hydrolases (e.g., cellulases) at high titers for use in industrial bioprocessing. In this study, we focused on α-L-arabinofuranosidase, an enzyme important for the treatment of lignocellulosic biomass, but susceptible to oxidative damage that can occur during industrial processing. The molecular details that render this enzyme inactive have not yet been identified. To approach this issue, we used proteomics to identify amino acid residues that were oxidized after a relevant oxidative treatment (Fenton reaction). These oxidative modifications were included in the 3D protein structures, and using molecular dynamics simulations, we then studied the behaviors of non-modified and oxidized enzymes. These simulations showed significant alterations of the conformational stability of the protein when oxidized, as evidenced by changes in root mean square deviation (RMSD) and principal component analyses (PCA) trajectories. Likewise, enzyme-ligand interactions such as hydrogen bonds were greatly reduced in quantity and quality in the oxidized protein. Finally, free energy landscape plots showed that there was a more rugged energy surface in the oxidized protein, implying a less favorable reaction pathway. These results reveal the basis for loss of function in this carbohydrate active enzyme (CAZY) in the commercially relevant fungus T. reesei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davis, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3(9), 853–859. https://doi.org/10.1016/S0969-2126(01)00220-9.

    Article  Google Scholar 

  2. Laine, R. A. (1994). A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: The Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology, 4(6), 759–767. https://doi.org/10.1093/glycob/4.6.759.

    Article  CAS  PubMed  Google Scholar 

  3. Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; Opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578–595. https://doi.org/10.7150/ijbs.5.578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, J., Presley, G. N., Hammel, K. E., Ryu, J.-S., Menke, J. R., Figueroa, M., Hu, D., Orr, G., & Schilling, J. S. (2016). Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proceedings of the National Academy of Sciences, 113(39), 10968–10973. https://doi.org/10.1073/pnas.1608454113.

    Article  CAS  Google Scholar 

  5. Saha, B. C., & Bothast, R. (1999). Pretreatment and enzymatic saccharification of corn fiber. Applied Biochemistry and Biotechnology, 76(2), 65–77. https://doi.org/10.1385/ABAB:76:2:65.

    Article  CAS  PubMed  Google Scholar 

  6. Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15(3–4), 583–620. https://doi.org/10.1016/S0734-9750(97)00006-2.

    Article  CAS  PubMed  Google Scholar 

  7. Paloheimo, M., Haarmann, T., Mäkinen, S., & Vehmaanperä, J. (2016). Production of industrial enzymes in Trichoderma reesei. In Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology (pp. 23–57). Springer. https://doi.org/10.1007/978-3-319-27951-0_2.

  8. Baker, S. E. (2008). Trichoderma reesei v2.0. JGI Genome portal. Retrieved from https://mycocosm.jgi.doe.gov/Trire2/Trire2.home.html. Accessed 08/05/2020

  9. Presley, G. N., Zhang, J., & Schilling, J. S. (2018). A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi. Fungal Genetics and Biology, 112, 64–70. https://doi.org/10.1016/j.fgb.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  10. Presley, G. N., Panisko, E., Purvine, S. O., & Schilling, J. S. (2018). Coupling secretomics with enzyme activities to compare the temporal processes of wood metabolism among white and brown rot fungi. Applied and Environmental Microbiology, 84, 159–180.

    Article  Google Scholar 

  11. Castaño, J. D., Zhang, J., Anderson, C. E., & Schilling, J. S. (2018). Oxidative damage control during decay of wood by brown rot fungus using oxygen radicals. Applied and Environmental Microbiology, 84(22), e01937–e01918. https://doi.org/10.1128/AEM.01937-18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Druzhinina, I. S., & Kubicek, C. P. (2017). Genetic engineering of Trichoderma reesei cellulases and their production. Microbial Technology, 10(6), 1485–1499. https://doi.org/10.1111/1751-7915.12726.

    Article  CAS  Google Scholar 

  13. Vasquez-Medrano, R., Prato-Garcia, D., & Vedrenne, M. (2018). Chapter 4 - Ferrioxalate-mediated processes. In S. C. Ameta & R. Ameta (Eds.), Advanced Oxidation Processes for Waste Water Treatment (pp. 89–113). Academic Press. https://doi.org/10.1016/B978-0-12-810499-6.00004-8.

  14. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, (ID 217037), 2012, 1–26. https://doi.org/10.1155/2012/217037.

    Article  CAS  Google Scholar 

  15. Mallek-Fakhfakh, H., & Belghith, H. (2016). Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides. Carbohydrate Research, 419, 41–50.

    Article  CAS  Google Scholar 

  16. Fic, E., Kedracka-Krok, S., Jankowska, U., Pirog, A., & Dziedzicka-Wasylewska, M. (2010). Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis, 31(21), 3573–3579. https://doi.org/10.1002/elps.201000197.

    Article  CAS  PubMed  Google Scholar 

  17. Burnum-Jhonson, K. E., Kyle, J. E., Eisfeld, A. J., Casey, C. P., Stratton, K. J., Gonzalez, J. F., et al. (2017). MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst, 142(3), 442–448. https://doi.org/10.1039/c6an02486f.

    Article  Google Scholar 

  18. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols, 86(1), 2.9.1–2.9.37. https://doi.org/10.1002/cpps.20.

    Article  Google Scholar 

  19. Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N., & Alva, V. (2018). A completely reimplemented mpi bioinformatics toolkit with a new HHpred server at its core. Journal of Molecular Biology, 430(15), 2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007.

    Article  CAS  PubMed  Google Scholar 

  20. Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u.

    Article  CAS  PubMed  Google Scholar 

  21. Gilli, P., Pretto, L., Bertolasi, V., & Gilli, G. (2009). Predicting hydrogen-bond strengths from acid-base molecular properties. The pK a slide rule: Toward the solution of a long-lasting problem. Accounts of Chemical Research, 42(1), 33–44. https://doi.org/10.1021/ar800001k.

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan, B. S. (2008). Principles of biochemistry and biophysics. Laxmi Publications Pvt Limited.

  23. Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petrov, D., Daura, X., & Zagrovic, B. (2016). Effect of oxidative damage on the stability and dimerization of superoxide dismutase 1. Biophysical Journal, 110(7), 1499–1509. https://doi.org/10.1016/j.bpj.2016.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Margreitter, C., Petrov, D., & Zagrovic, B. (2013). Vienna-PTM web server: A toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Research, 41(W1), W422–W426. https://doi.org/10.1093/nar/gkt416.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petrov, D., Margreitter, C., Grandits, M., Oostenbrink, C., & Zagrovic, B. (2013). A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS Computational Biology, 9(7), e1003154.

    Article  CAS  Google Scholar 

  27. Miyanaga, A., Koseki, T., Matsuzawa, H., Wakagi, T., Shoun, H., & Fushinobu, S. (2004). Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. The Journal of Biological Chemistry, 279(43), 44907–44914. https://doi.org/10.1074/jbc.M405390200.

    Article  CAS  PubMed  Google Scholar 

  28. Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts rmsd applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028.

    Article  CAS  PubMed  Google Scholar 

  29. Mhlongo, N. N., Ebrahim, M., Skelton, A. A., Kruger, H. G., Williams, I. H., & Soliman, M. E. S. (2015). Dynamics of the thumb-finger regions in a GH11 xylanase Bacillus circulans: comparison between the Michaelis and covalent intermediate. RSC Advances, 5(100), 82381–82394. https://doi.org/10.1039/c5ra16836h.

    Article  CAS  Google Scholar 

  30. Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Computational Chemistry, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240.

    Article  CAS  Google Scholar 

  31. Cossio-Pérez, R., Palma, J., & Pierdominici-Sottile, G. (2017). Consistent principal component modes from molecular dynamics simulations of proteins. Journal of Chemical Information and Modeling, 57(4), 826–834. https://doi.org/10.1021/acs.jcim.6b00646.

    Article  CAS  PubMed  Google Scholar 

  32. Basith, S., Manavalan, B., Shin, T. H., & Lee, G. (2019). A molecular dynamics approach to explore the intramolecular signal transduction of PPAR-α. International Journal of Molecular Sciences, 20(7), 1666. https://doi.org/10.3390/ijms20071666.

    Article  CAS  PubMed Central  Google Scholar 

  33. David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology, 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_11.

    Article  CAS  PubMed  Google Scholar 

  34. Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics and Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, J., Lv, Y., Han, X., Xu, D., & Han, W. (2017). Understanding the differences of the ligand binding/unbinding pathways between phosphorylated and non-phosphorylated ARH1 using molecular dynamics simulations. Scientific Reports, 7(1), 12439. https://doi.org/10.1038/s41598-017-12031-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank the Fulbright Commission and the Colombian Ministry of Science, Technology, and Innovation for the funding of the lead author. Research funding was from United States Department of Energy (US DOE) grant DE-SC0019427 and an Environmental Molecular Science Laboratory User Facility grant (EUP-50799), both sponsored by US DOE Biological and Environmental Research program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.D.C.; methodology, J.D.C and M.Z.; writing—original draft preparation, J.D.C.; writing—review and editing, M.Z. and J.S.S.; project administration, J.S.S.; funding acquisition, J.S.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jonathan Schilling.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1

Ligand-enzyme interactions for the non-modified and oxidized GH54 proteins determined with the Software Ligplot+. Amino acids that interact with the substrate in both proteins are shown in a gray box. (PNG 9840 kb)

High Resolution (TIFF 1379 kb)

Figure S2

Depiction of the atoms involved in the hydrogen bonds described in figure 5. The non-modified protein is shown on the left, while the oxidized protein is shown on the right. (PNG 108 kb)

High Resolution (TIF 1176 kb)

Table S1

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaño, J.D., Zhou, M. & Schilling, J. Towards an Understanding of Oxidative Damage in an α-L-Arabinofuranosidase of Trichoderma reesei: a Molecular Dynamics Approach. Appl Biochem Biotechnol 193, 3287–3300 (2021). https://doi.org/10.1007/s12010-021-03594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03594-w

Keywords

Navigation