Skip to main content
Log in

Bioprocess Optimisation for High Cell Density Endoinulinase Production from Recombinant Aspergillus niger

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endoinulinase gene was expressed in recombinant Aspergillus niger for selective and high-level expression using an exponential fed-batch fermentation. The effects of the growth rate (μ), glucose feed concentration, nitrogen concentration and fungal morphology on enzyme production were evaluated. A recombinant endoinulinase with a molecular weight of 66 kDa was secreted. Endoinulinase production was growth associated at μ> 0.04 h−1, which is characteristic of the constitutive gpd promoter used for the enzyme production. The highest volumetric activity (670 U/ml) was achieved at a growth rate of 93% of μmax (0.07 h−1), while enzyme activity (506 U/ml) and biomass substrate yield (0.043 gbiomassDW/gglucose) significantly decreased at low μ (0.04 h−1). Increasing the feed concentration resulted in high biomass concentrations and viscosity, which necessitated high agitation to enhance the mixing efficiency and oxygen. However, the high agitation and low DO levels (ca. 8% of saturation) led to pellet disruption and growth in dispersed morphology. Enzyme production profiles, product (Yp/s) and biomass (Yx/s) yield coefficients were not affected by feed concentration and morphological change. The gradual increase in the concentration of nitrogen sources showed that, a nitrogen limited culture was not suitable for endoinulinase production in recombinant A. niger. Moreover, the increase in enzyme volumetric activity was still directly related to an increase in biomass concentration. An increase in nitrogen concentration, from 3.8 to 12 g/L, resulted in volumetric activity increase from 393 to 670 U/ml, but the Yp/s (10053 U/gglucose) and Yx/s (0.049 gbiomasDWs/gglucose) did not significantly change. The data demonstrated the potential of recombinant A. niger and high cell density fermentation for the development of large-scale endoinulinase production system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Franck, A. (2002). Technological functionality of inulin and oligofructose. The British Journal of Nutrition, 87, 87–91.

    Article  Google Scholar 

  2. Singh, R. S., & Chauhan, K. (2018). Production, purification, characterization and applications of fungal inulinases. Current. Biotechnology., 7(3), 242–260.

    Article  CAS  Google Scholar 

  3. Yang, L., He, Q. S., Corscadden, K., & Udeningwe, C. C. (2015). The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnology Reports, 5, 77–88.

    Article  CAS  PubMed  Google Scholar 

  4. Johansson, E., Prade, T., Angelidaki, I., Svensson, S., Newson, W. R., Gunnarsson, I. B., & Hovmalm, H. P. (2015). Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. International Journal of Molecular Sciences, 16(12), 8997–9016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Long, X., Shao, H., Liu, L., & Liu, Z. (2016). Jerusalem artichoke: a sustainable biomass feedstock for biorefinery. Renewable and Sustainable Energy Reviews, 54, 1382–1388.

    Article  CAS  Google Scholar 

  6. Li, Y., Liu, G., Wang, K., Chi, Z., & Madzak, C. (2012). Overexpression of the endo-inulinase gene from Arthrobacter sp. S37 in Yarrowia lipolytica and characterization of the recombinant endo-inulinase. Journal of Molecular Catalysis B: Enzymatic, 74(1-2), 109–115.

    Article  CAS  Google Scholar 

  7. Singh, R. S., Singh, R. P., & Yadav, M. (2013). Molecular and biochemical characterization of a new endoinulinase producing bacterial strain of Bacillus safensis AS-08. Biologia., 68(6), 1028–1033.

    Article  CAS  Google Scholar 

  8. Leelaram, S., Sivanesha, N. E., Surianarayanan, M., Deepab, P. R., & Balaje, S. A. (2016). Effect of feeding strategies on inulinase production analyzed in abiocalorimeter. Process Biochemistry, 51(6), 692–703.

    Article  CAS  Google Scholar 

  9. Rose, S. H., & van Zyl, W. H. (2008). Exploitation of Aspergillus niger for the Heterologous production of cellulases and hemicellulases. Open Biotechnology Journal, 2(1), 167–175.

    Article  CAS  Google Scholar 

  10. Cheng, L., Wu, J., & Hen, T. (2002). A pseudo-exponential feeding method for control of specific growth rate in fed-batch cultures. Biochemical Engineering Journal, 10(3), 227–232.

    Article  CAS  Google Scholar 

  11. Alriksson, B., Rose, S. H., van Zyl, W. H., Sjode, A., Nilvebrant, N., & Jonsson, L. J. (2009). Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Applied and Environmental Microbiology, 75(8), 2366–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Driouch, H., Roth, A., Dersch, P., & Wittmann, C. (2010). Optimised bioprocess for production of fructofuranosidase by recombinant Aspergillus niger. Applied Microbiology and Biotechnology, 87(6), 2011–2024.

    Article  CAS  PubMed  Google Scholar 

  13. Krull, R., Wucherpfennig, T., Esfandabadi, M. E., Walisko, R., Melzer, G., Hempel, D. C., Kampen, I., Kwade, A., & Wittmann, C. (2013). Characterisation and control of fungal morphology for improved production performance in biotechnology. Journal of Biotechnology, 163(2), 112–123.

    Article  CAS  PubMed  Google Scholar 

  14. Driouch, H., Hansch, R., Wucherpfennig, R., Krull, R., & Wittmann, C. (2012). Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnology and Bioengineering, 109(2), 462–471.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, M., Lei, X., Chen, C., Zhang, S., Xie, J., & Wei, D. (2015). Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167.

    Article  CAS  PubMed  Google Scholar 

  16. Casas-Lopez, J. L., Sanchez-Perez, J. A., Fernandez-Sevilla, J. M., Rodriguez-Porcel, E. M., & Chisti, Y. (2005). Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. Journal of Biotechnology, 116(1), 61–77.

    Article  CAS  PubMed  Google Scholar 

  17. Bhargava, S., Nandakumar, M. P., Roy, A., Wenger, K. S., & Marten, M. R. (2003). Pulsed feeding during fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnology and Bioengineering, 81(3), 341–347.

    Article  CAS  PubMed  Google Scholar 

  18. Souza, P. M., Bittencourt, M. L. A., Caprara, C. C., Freitas, M., Almeida, R. P. C., Silveira, D., Fonseca, Y. M., Ferreira, F., Edivaldo, X., Pessoa, J. A., & Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46(2), 337–346.

    Article  PubMed  PubMed Central  Google Scholar 

  19. James, E., van Zyl, W., van Zyl, P., & Görgens, J. (2007). Increased Hepatitis B surface antigen production by recombinant Aspergillus niger through the optimization of agitation and dissolved oxygen concentration. Applied Microbiology and Biotechnology, 75(2), 279–288.

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook, J., Fritsch, E. F., & Miniatis, T. (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press.

  21. Rose, S. H., & van Zyl, W. H. (2002). Constitutive expression of the Trichoderma reesei beta-1,4-xylanase gene (xyn2) and the beta-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media. Applied Microbiology and Biotechnology, 58(4), 461–468.

    Article  CAS  PubMed  Google Scholar 

  22. Plüddemann, A., & van Zyl, W. H. (2003). Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Current Genetics, 43(6), 439–446.

    Article  PubMed  CAS  Google Scholar 

  23. Punt, P. J., & van den Hondel, C. A. J. (1992). Transformation of filamentous fungi based on hygromycin b and phleomycin resistance markers. Methods in Enzymology, 216, 447–457.

    Article  CAS  PubMed  Google Scholar 

  24. O’Connell, K., & Stults, J. T. (1997). Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis., 18(3-4), 349–359.

    Article  PubMed  Google Scholar 

  25. Kim, B. S., Lee, S. C., Lee, S. Y., Chan, Y. K., & Chan, H. N. (2004). High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess and Biosystems Engineering, 26(3), 147–150.

    Article  CAS  PubMed  Google Scholar 

  26. James, E., van Zyl, W., van Zyl, P., Görgens, J. (2012). Recombinant Hepatitis B surface antigen production in Aspergillus niger. Thesis, Stellenbosch University.

  27. Li, X., Kang, Y., Yu, C., Dai, J., Wang, Z., Li, Z., Yao, J., Li, P., Zheng, G., & Chen, X. (2016). Exponential feeding strategy of high-density cultivation of a salt-tolerant aroma-producing yeast Zygosaccharomyces rouxii in stirred fermenter. Biochemical Engineering Journal, 111, 18–23.

    Article  CAS  Google Scholar 

  28. Xu, J., Zheng, Z., Xu, Q., Yong, Q., & Ouyang, J. (2016). Efficient conversion of inulin to inulooligosaccharides through endoinulinase from Aspergillus niger. Journal of Agricultural and Food Chemistry, 64(12), 2612–2618.

    Article  CAS  PubMed  Google Scholar 

  29. Haack, M. B., Olsson, L., Hansen, K., & Lantz, A. E. (2006). Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation. Applied Microbiology and Biotechnology, 70(4), 482–487.

    Article  CAS  PubMed  Google Scholar 

  30. Porcel, E. M. R., Lopez, J. L. C., Perez, J. A. S., & Chisti, Y. (2007). Enhanced production of lovastatin in a bubble column by Aspergillus terreus using a two-stage feeding strategy. Journal of Chemical Technology and Biotechnology, 82(1), 58–64.

    Article  CAS  Google Scholar 

  31. Haq, I., Nawaz, A., Mukhtae, H., & Ur-Rehman, A. (2015). Optimisation of inoculum volume, fermentation medium and aeration rate for the production of glucose oxidase by UV mutant strain of Aspergillus niger AN-14. Pakistan Journal of Botany, 329, 329–332.

    Google Scholar 

  32. Walisko, R., Moench-Tegeder, J., Blotenberg, J., Wucherpfennig, T., & Krull, R. (2015). The taming of the shrew--controlling the morphology of filamentous eukaryotic and prokaryotic microorganisms. Advances in Biochemical Engineering/Biotechnology, 149, 1–27.

    Article  PubMed  Google Scholar 

  33. Coban, H. B., & Demirci, A. (2015). Improved submerged Apergillus ficuum phytase production in bench-top bioreactors by optimisation of fermentation medium. Acta Alimentaria, 4, 549–560.

    Article  CAS  Google Scholar 

  34. Zhang, J., & Zhang, J. (2016). The filamentous fungal pellet and forces driving its formation. Critical Reviews in Biotechnology, 36(6), 1066–1077.

    Article  CAS  PubMed  Google Scholar 

  35. Wargenau, A., & Kwade, A. (2010). Determination of adhesion between single Aspergillus niger spores in aqueous solutions using an atomic force microscope. Langmuir., 26(13), 11071–11076.

    Article  CAS  PubMed  Google Scholar 

  36. Spohr, A. B. C., Carlsen, D. M., Nielsen, J., & Villadsen, J. (1998). On-line study of fungal morphology during submerged growth in a small flow-through cell. Biotechnology and Bioengineering, 58(5), 541–553.

    Article  CAS  PubMed  Google Scholar 

  37. Elisashvili, V. I., Kachlishvili, E. T., & Wasser, S. P. (2009). Carbon and nitrogen source effects on basidiomycetes exopolysaccharide production. Applied Biochemistry and Microbiology, 45(5), 531–535.

    Article  CAS  Google Scholar 

  38. Sun, X., Zhang, R., & Zhang, Y. (2004). Production of lignocellulolytic enzymes by Trametes gallica and detection of polysaccharide hydrolase and laccase activities in polyacrylamide gels. Journal of Basic Microbiology, 44(3), 220–231.

    Article  CAS  PubMed  Google Scholar 

  39. Veiter, L., Rajamanickam, V., & Herwig, C. (2018). The filamentous fungal pellet—relationship between morphology and productivity. Applied Microbiology and Biotechnology, 102(7), 2997–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Low, E. W., & Chase, H. A. (1999). The effect of maintenance energy requirements on biomass production during wastewater treatment. Water Research, 33(3), 847–853.

    Article  CAS  Google Scholar 

  41. Vos, T., Hakkaart, X. D. V., de Hulster, E. A. F., van Maris, A. J. A., Pronk, J. T., & Daran-Lapujade, P. (2016). Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Microbial Cell Factories, 15(1), 111–131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tannler, S., Decasper, S., & Sauer, U. (2008). Maintenance metabolism and carbon fluxes in Bacillus Species. Microbial Cell Factories, 7(1), 19–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pal, Y., Kushoo, A., & Mukherjee, K. J. (2006). Process optimization of constitutive human granulocyte–macrophage colony-stimulating factor (hGM-CSF) expression in Pichia pastoris fed-batch culture. Applied Microbiology and Biotechnology, 69(6), 650–657.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Research Foundation for the financial support and the Glen Agricultural College, Bloemfontein, Free State Province, for kindly donating the JA tubers

Availability of Data and Material

N/A

Code Availability

N/A

Funding

N/A

Author information

Authors and Affiliations

Authors

Contributions

Pfariso Maumela: Experimental planning (60), Execution experiments (80), Data interpretation (80), Manuscript compilation (90). Shaunita H. Rose: Experimental planning (5), Executing experiments (20), Data interpretation (10), Strain development and manuscript compilation (10). Eugéne van Rensburg: Experimental planning (10), Data interpretation (5), Manuscript revision (25). Annie F. A. Chimphango: Experimental planning (5), Data interpretation (5), Manuscript revision (10). Johann F. Görgens: Experimental planning (20), Data interpretation (10), Manuscripts revision (65).

Corresponding author

Correspondence to Eugéne van Rensburg.

Ethics declarations

Ethics Approval

N/A

Consent to Participate

N/A

Consent for Publication

We declare that the information in this manuscript has not been published elsewhere nor is it under consideration by any other journal. Furthermore, it is the consensus of all authors to submit this manuscript for possible publication in ABB

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maumela, P., Rose, S., van Rensburg, E. et al. Bioprocess Optimisation for High Cell Density Endoinulinase Production from Recombinant Aspergillus niger. Appl Biochem Biotechnol 193, 3271–3286 (2021). https://doi.org/10.1007/s12010-021-03592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03592-y

Keywords