Skip to main content
Log in

Solid-State Cultivation of Aspergillus niger–Trichoderma reesei from Sugarcane Bagasse with Vinasse in Bench Packed-Bed Column Bioreactor

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Solid-state cultivation (SSC) is microbial growth on solid supports under limited water conditions. Citric acid is a microbial aerobic metabolic product with several industrial applications, with production potential that can be obtained by SSF. Several wastes from agro-industries are used in SSF, such as sugarcane bagasse and vinasse. Cultures of mixed fungi or co-cultures are used in this SSF in order to complement the inoculum’s xylanolytic enzymes for action on the lignocellulosic material (bagasse). Thus, this study aims to evaluate the effect of inoculum (Aspergillus niger and Trichoderma reesei consortium) in the production of citric acid from sugarcane bagasse impregnated with vinasse using bench packed-bed reactors (PBR). The results show the importance of T. reesei and A. niger in inoculum at a ratio of 50:50 and 25:75, suggesting the use of solid support due to the complementation of the hydrolytic enzymes. The highest concentration of citric acid, approximately 1000 mg L−1, was obtained for 100 mm of bed height in 48 and 72 h, with maximum glucose yield in citric acid (2.2 mg citric acid mg glucose−1). kLa indicates that maintaining solid moisture and liquid film thickness is important to keep the oxygen transfer in SSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84. https://doi.org/10.1016/S1369-703X(02)00121-3.

    Article  CAS  Google Scholar 

  2. Ávila, S. N. S., Gutarra, M. L. E., Fernandez-Lafuente, R., Cavalcanti, E. D. C., & Freire, D. M. G. (2019). Multipurpose fixed-bed bioreactor to simplify lipase production by solid state fermentation and application in biocatalysis. Biochemical Engineering Journal, 144, 1–7. https://doi.org/10.1016/j.bej.2018.12.024.

    Article  CAS  Google Scholar 

  3. Perez, C. L., Perpétua Casciatori, F., & Thoméo, J. C. (2019). Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: The case of cellulolytic enzymes production by a thermophilic fungus. Chemical Engineering Journal, 361, 1142–1151. https://doi.org/10.1016/j.cej.2018.12.169.

    Article  CAS  Google Scholar 

  4. Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161. https://doi.org/10.1016/j.bej.2013.10.013.

    Article  CAS  Google Scholar 

  5. Yang, Y. H., Wang, B. C., Wang, Q. H., Xiang, L. J., & Duan, C. R. (2004). Research on solid-state fermentation on rice chaff with a microbial consortium. Colloids and Surfaces B: Biointerfaces, 34(1), 1–6. https://doi.org/10.1016/j.colsurfb.2003.10.009.

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Ramirez, N., Volke-Sepulveda, T., Gaime-Perraud, I., Saucedo-Castañeda, G., & Favela-Torres, E. (2018). Effect of stirring on growth and cellulolytic enzymes production by Trichoderma harzianum in a novel bench-scale solid-state fermentation bioreactor. Bioresource Technology, 265, 291–298. https://doi.org/10.1016/j.biortech.2018.06.015.

    Article  CAS  PubMed  Google Scholar 

  7. Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), 120–128. https://doi.org/10.1016/j.procbio.2009.08.015.

    Article  CAS  Google Scholar 

  8. Bastos, R. G., França, H. C. R., Campanhol, B. S., Castro, M. C., Silveira, G. C.. (2017). Sequential process of citric acid production in sugarcane bagasse by microbial consortium and ethanol fermentation from fungal extract. In: 2017 ASABE Annual International Meeting, Spokane, WA, USA. Proceedings ASABE. https://doi.org/10.13031/aim.201700161.

  9. Bastos, R. G., Morais, D. V., & Volpi, M. P. C. (2015). Influence of solid moisture and bed height on cultivation of Aspergillus niger from sugarcane bagasse with vinasse. Brazilian Journal of Chemical Engineering, 32(2), 377–384. https://doi.org/10.1590/0104-6632.20150322s00003423.

    Article  Google Scholar 

  10. Campanhol, B. S., Silveira, G. C., Castro, M. C., Ceccato-Antonini, S. R., & Bastos, R. G. (2019). Effect of the nutrient solution in the microbial production of citric acid from sugarcane bagasse and vinasse. Biocatalysis and Agricultural Biotechnology, 19, 101147. https://doi.org/10.1016/j.bcab.2019.101147.

    Article  Google Scholar 

  11. Jugwanth, Y., Sewsynker-Sukai, E. B., & Gueguim, K. (2020). Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel, 262, 116552. https://doi.org/10.1016/j.fuel.2019.116552.

    Article  CAS  Google Scholar 

  12. Khosravi-Darani, K., & Zoghi, A. (2008). Comparison of pretreatment strategies of sugarcane bagasse: Experimental design for citric acid production. Bioresource Technology, 99(15), 6986–6993. https://doi.org/10.1016/j.biortech.2008.01.024.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, D., Jain, V. K., Shanker, G., & Srivastava, A. (2003). Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochemistry, 38(12), 1731–1738. https://doi.org/10.1016/S0032-9592(02)00252-2.

    Article  CAS  Google Scholar 

  14. Oliveira, A. F., De Carvalho, V. M., & Bastos, R. G. (2012). Cultivation of Aspergillus niger on sugarcane bagasse with vinasse. Bioscience Journal, 28(6).

  15. Parsaee, M., Kiani, M. K. D., & Karimi, K. (2019). A review of biogas production from sugarcane vinasse. Biomass and Bioenergy, 122, 117–125. https://doi.org/10.1016/j.biombioe.2019.01.034.

    Article  CAS  Google Scholar 

  16. Zhang, H., Xu, J., Su, X., Bao, J., Wang, K., & Mao, Z. (2017). Citric acid production by recycling its wastewater treated with anaerobic digestion and nanofiltration. Process Biochemistry, 58, 245–251. https://doi.org/10.1016/j.procbio.2017.04.022.

    Article  CAS  Google Scholar 

  17. Barrington, S., & Kim, J. W. (2008). Response surface optimization of medium components for citric acid production by Aspergillus niger NRRL 567 grown in peat moss. Bioresource Technology, 99(2), 368–377. https://doi.org/10.1016/j.biortech.2006.12.007.

    Article  CAS  PubMed  Google Scholar 

  18. Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2013). Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Industrial Crops and Products, 41, 78–84. https://doi.org/10.1016/j.indcrop.2012.04.001.

    Article  CAS  Google Scholar 

  19. Durand, A. (2003). Bioreactor designs for solid-state fermentation. Biochemical Engineering Journal, 13(2), 113–125. https://doi.org/10.1016/S1369-703X(02)00124-9.

    Article  CAS  Google Scholar 

  20. Raimbault, M., Germon, J. C. (1976). Procédé d’enrichissement en proteins de produits comestibles solides, French Patent no. 76-06-677.

  21. Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid-state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269, 16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010.

    Article  CAS  PubMed  Google Scholar 

  22. Pereira, G. E., De Andrade Lima, T. L., & Rocha, H. (2010). Otimização e validação de método para determinação de ácidos orgânicos em vinhos por cromatografia líquida de alta eficiência. Quimica Nova, 33(5), 1186–1189.

    Article  Google Scholar 

  23. Nielsen, J., Villadsen, J., & Liden, G. (2003). Bioreaction engineering principles (2nd ed.). Kluwer Academic/Plenum.

  24. Papagianni, M. (2007). Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnology Advances, 25(3), 244–263. https://doi.org/10.1016/j.biotechadv.2007.01.002.

    Article  CAS  PubMed  Google Scholar 

  25. Gowthaman, M. K., Raghava Rao, K. S. M. S., Ghidyal, N. P., & Karanth, N. G. (1995). Estimation of KLa in solid-state fermentation using a packed-bed bioreactor. Process Biochemistry. V., 30(1), 9–15. https://doi.org/10.1016/0032-9592(95)87002-4.

    Article  CAS  Google Scholar 

  26. Thibault, J., Pouliot, K., Agosin, E., & Pérez-Correa, R. (2000). Reassessment of the estimation of dissolved oxygen concentration profile and KLa in solid-state fermentation. Process Biochemistry. V., 36, 9–18. https://doi.org/10.1016/S0032-9592(00)00156-4.

    Article  CAS  Google Scholar 

  27. Oostra, J., Le Comte, E. P., Van Den Heuvel, J. C., Tramper, J., & Rinzema, A. (2001). Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnology and Bioengineering, 75(1), 13–24. https://doi.org/10.1002/bit.1159.

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez-Fernández, D. E., Rodríguez-León, J. A., De Carvalho, J. C., Karp, S. G., Sturm, W., Parada, J. L., & Soccol, C. R. (2012). Influence of airflow intensity on phytase production by solid-state fermentation. Bioresource Technology, 118, 603–606. https://doi.org/10.1016/j.biortech.2012.05.032.

    Article  CAS  PubMed  Google Scholar 

  29. Doran, P. (2012). Bioprocess Engineering Principles (2nd ed.). Academic Press. 926 p.

Download references

Availability of Data and Material (Data Transparency)

All data were generated from experimental tests in the laboratory coordinated by the advisor.

Code Availability

Not applicable.

Funding

The authors are grateful for the financial support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Processes Numbers 2016-09629-7 and 2017/24460-1) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Laura Macedo Rocha: responsible for the analysis and monitoring of experiments.

Beatriz Silva Campanhol: responsible for set up the tests and discussing part of the results.

Reinaldo Gaspar Bastos: general research orientation and final analysis of results.

Corresponding author

Correspondence to Reinaldo Gaspar Bastos.

Ethics declarations

Additional Declarations for Articles in Life Science Journals that Report the Results of Studies Involving Humans and/or Animals

Not applicable.

Ethics Approval

All authors agree with ethical responsibilities.

Consent to Participate

All authors agreed to participate in the submission of this manuscript.

Consent for Publication (Include Appropriate Statements)

All authors agreed with the possible publication of the research in this journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, L.M., Campanhol, B.S. & Bastos, R.G. Solid-State Cultivation of Aspergillus niger–Trichoderma reesei from Sugarcane Bagasse with Vinasse in Bench Packed-Bed Column Bioreactor. Appl Biochem Biotechnol 193, 2983–2992 (2021). https://doi.org/10.1007/s12010-021-03579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03579-9

Keywords

Navigation