Gomes, T. S., Visconte, L. L. Y., & Pacheco, E. B. A. V. (2019). Life cycle assessment of polyethylene terephthalate packaging: An overview. Journal of Polymers and the Environment, 27(3), 533–548. https://doi.org/10.1007/s10924-019-01375-5.
CAS
Article
Google Scholar
Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research International, 16(3), 278–286. https://doi.org/10.1007/s11356-009-0107-7.
CAS
Article
PubMed
Google Scholar
Sax, L. (2010). Polyethylene terephthalate may yield endocrine disruptors. Environmental Health Perspectives, 118(4), 445–448. https://doi.org/10.1289/ehp.0901253.
CAS
Article
PubMed
Google Scholar
Pan, G., Hanaoka, T., Yoshimura, M., Zhang, S., Wang, P., Tsukino, H., Inoue, K., Nakazawa, H., Tsugane, S., & Takahashi, K. (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): A cross-sectional study in China. Environmental Health Perspectives, 114(11), 1643–1648. https://doi.org/10.1289/ehp.9016.
CAS
Article
PubMed
PubMed Central
Google Scholar
Swan, S. H., Main, K. M., Liu, F., Stewart, S. L., Kruse, R. L., Calafat, A. M., … Study for Future Families Research Team. (2005). Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives, 113(8), 1056–1061. https://doi.org/10.1289/ehp.8100
Godswill, A. C., & Godspel, A. C. (2019). Physiological effects of plastic wastes on the endocrine system (Bisphenol A, Phthalates, Bisphenol S, PBDEs, TBBPA). International Journal of Bioinformatics and Computational Biology, 4(2), 11–29.
Google Scholar
Grün, F., & Blumberg, B. (2009). Endocrine disrupters as obesogens. Molecular and Cellular Endocrinology, 304(1–2), 19–29. https://doi.org/10.1016/j.mce.2009.02.018.
CAS
Article
PubMed
PubMed Central
Google Scholar
Arvanitoyannis, I., & Bosnea, L. A. (2001). Recycling of polymeric materials used for food packaging: Current status and perspectives. Food Reviews International, 17(3), 291–346. https://doi.org/10.1081/FRI-100104703.
CAS
Article
Google Scholar
K, R., L, D., & K, V. G. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management (New York, N.Y.), 69, 24–58. https://doi.org/10.1016/j.wasman.2017.07.044
Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001.
CAS
Article
Google Scholar
Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.
Article
Google Scholar
Faroon, O., & Ruiz, P. (2016). Polychlorinated biphenyls: New evidence from the last decade. Toxicology and Industrial Health, 32(11), 1825–1847. https://doi.org/10.1177/0748233715587849.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim, K., Pant, P., & Yamashita, E. (2013). Using national household travel survey data for the assessment of transportation system vulnerabilities: Transportation Research Record. https://doi.org/10.3141/2376-09
Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8(1), 4666. https://doi.org/10.1038/s41598-018-22939-w.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/rstb.2009.0053.
CAS
Article
Google Scholar
Gregory, M. R. (2009). Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2013–2025. https://doi.org/10.1098/rstb.2008.0265.
Article
Google Scholar
Bakir, A., Rowland, S. J., & Thompson, R. C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), 2782–2789. https://doi.org/10.1016/j.marpolbul.2012.09.010.
CAS
Article
PubMed
Google Scholar
Agamuthu, P., Mehran, S. B., Norkhairah, A., & Norkhairiyah, A. (2019). Marine debris: A review of impacts and global initiatives. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 37(10), 987–1002. https://doi.org/10.1177/0734242X19845041.
CAS
Article
Google Scholar
Collignon, A., Hecq, J.-H., Galgani, F., Collard, F., & Goffart, A. (2014). Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Marine Pollution Bulletin, 79(1–2), 293–298. https://doi.org/10.1016/j.marpolbul.2013.11.023.
CAS
Article
PubMed
Google Scholar
M’rabet, C., Yahia, O. K.-D., Couet, D., Gueroun, S. K. M., & Pringault, O. (2019). Consequences of a contaminant mixture of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), two plastic-derived chemicals, on the diversity of coastal phytoplankton. Marine Pollution Bulletin, 138, 385–396.
Article
Google Scholar
Molino, C., Filippi, S., Stoppiello, G. A., Meschini, R., & Angeletti, D. (2019). In vitro evaluation of cytotoxic and genotoxic effects of Di(2-ethylhexyl)-phthalate (DEHP) on European sea bass (Dicentrarchus labrax) embryonic cell line. Toxicology in Vitro, 56, 118–125. https://doi.org/10.1016/j.tiv.2019.01.017.
CAS
Article
PubMed
Google Scholar
Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management, 210, 10–22. https://doi.org/10.1016/j.jenvman.2017.12.075.
CAS
Article
PubMed
Google Scholar
Joutey, N. T., Bahafid, W., Sayel, H., & ElGhachtouli, N. (2013). Biodegradation: Involved microorganisms and genetically engineered microorganisms. Biodegradation - Life of Science. https://doi.org/10.5772/56194.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science (New York, N.Y.), 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359.
CAS
Article
Google Scholar
Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813–2818. https://doi.org/10.1099/ijsem.0.001058.
CAS
Article
PubMed
Google Scholar
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359.
CAS
Article
PubMed
Google Scholar
Iwagami, S. G., Yang, K., & Davies, J. (2000). Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. Strain 2065. Applied and Environmental Microbiology, 66(4), 1499–1508. https://doi.org/10.1128/AEM.66.4.1499-1508.2000.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonzalez, C. F., Taber, W. A., & Zeitoun, M. A. (1972). Biodegradation of ethylene glycol by a salt-requiring bacterium. Applied Microbiology, 24(6), 911–919.
CAS
Article
Google Scholar
Kataoka, M., Sasaki, M., Hidalgo, A. R., Nakano, M., & Shimizu, S. (2001). Glycolic acid production using ethylene glycol-oxidizing microorganisms. Bioscience, Biotechnology, and Biochemistry, 65(10), 2265–2270. https://doi.org/10.1271/bbb.65.2265.
CAS
Article
PubMed
Google Scholar
Clark, D. P., & Cronan, J. E. (2005). Two-carbon compounds and fatty acids as carbon sources. EcoSal Plus, 1(2). https://doi.org/10.1128/ecosalplus.3.4.4.
Trifunović, D., Schuchmann, K., & Müller, V. (2016). Ethylene glycol metabolism in the acetogen Acetobacterium woodii. Journal of Bacteriology, 198(7), 1058–1065. https://doi.org/10.1128/JB.00942-15.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen, C.-C., Han, X., Ko, T.-P., Liu, W., & Guo, R.-T. (2018). Structural studies reveal the molecular mechanism of PETase. The FEBS Journal, 285(20), 3717–3723. https://doi.org/10.1111/febs.14612.
CAS
Article
PubMed
Google Scholar
Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., Pollard, B. C., Dominick, G., Duman, R., el Omari, K., Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Woodcock, H. L., McGeehan, J. E., & Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350–E4357. https://doi.org/10.1073/pnas.1718804115.
CAS
Article
Google Scholar
Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., Sotomayor, M., Parra, L. P., & Ramírez-Sarmiento, C. A. (2018). Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophysical Journal, 114(6), 1302–1312. https://doi.org/10.1016/j.bpj.2018.02.005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sulaiman, S., You, D.-J., Kanaya, E., Koga, Y., & Kanaya, S. (2014). Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry, 53(11), 1858–1869. https://doi.org/10.1021/bi401561p.
CAS
Article
PubMed
Google Scholar
Roth, C., Wei, R., Oeser, T., Then, J., Föllner, C., Zimmermann, W., & Sträter, N. (2014). Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Applied Microbiology and Biotechnology, 98(18), 7815–7823. https://doi.org/10.1007/s00253-014-5672-0.
CAS
Article
PubMed
Google Scholar
Joo, S., Cho, I. J., Seo, H., Son, H. F., Sagong, H.-Y., Shin, T. J., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 9(1), 382. https://doi.org/10.1038/s41467-018-02881-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Palm, G. J., Reisky, L., Böttcher, D., Müller, H., Michels, E. A. P., Walczak, M. C., Berndt, L., Weiss, M. S., Bornscheuer, U. T., & Weber, G. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1717. https://doi.org/10.1038/s41467-019-09326-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Knott, B. C., Erickson, E., Allen, M. D., Gado, J. E., Graham, R., Kearns, F. L., Pardo, I., Topuzlu, E., Anderson, J. J., Austin, H. P., Dominick, G., Johnson, C. W., Rorrer, N. A., Szostkiewicz, C. J., Copié, V., Payne, C. M., Woodcock, H. L., Donohoe, B. S., Beckham, G. T., & McGeehan, J. E. (2020). Characterization and engineering of a two-enzyme system for plastics depolymerization. Proceedings of the National Academy of Sciences, 117(41), 25476–25485. https://doi.org/10.1073/pnas.2006753117.
CAS
Article
Google Scholar
Suzuki, K., Hori, A., Kawamoto, K., Thangudu, R. R., Ishida, T., Igarashi, K., Samejima, M., Yamada, C., Arakawa, T., Wakagi, T., Koseki, T., & Fushinobu, S. (2014). Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Proteins, 82(10), 2857–2867. https://doi.org/10.1002/prot.24649.
CAS
Article
PubMed
Google Scholar
Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., Zhou, X., & Yuan, Y. (2018). Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 4(6), 888–893. https://doi.org/10.1016/j.eng.2018.09.007.
CAS
Article
Google Scholar
Liu, B., He, L., Wang, L., Li, T., Li, C., Liu, H., Luo, Y., & Bao, R. (2018). Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. Chembiochem: A European Journal of Chemical Biology, 19(14), 1471–1475. https://doi.org/10.1002/cbic.201800097.
CAS
Article
PubMed
Google Scholar
Wei, R., Song, C., Gräsing, D., Schneider, T., Bielytskyi, P., Böttcher, D., Matysik, J., Bornscheuer, U. T., & Zimmermann, W. (2019). Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nature Communications, 10(1), 5581. https://doi.org/10.1038/s41467-019-13492-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Seo, H., Cho, I. J., Joo, S., Son, H. F., Sagong, H.-Y., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2019). Reply to “Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation”. Nature Communications, 10(1), 5582. https://doi.org/10.1038/s41467-019-13493-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Son, H. F., Cho, I. J., Joo, S., Seo, H., Sagong, H.-Y., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2019). Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 9(4), 3519–3526. https://doi.org/10.1021/acscatal.9b00568.
CAS
Article
Google Scholar
Huang, X., Cao, L., Qin, Z., Li, S., Kong, W., & Liu, Y. (2018). Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by Its native signal peptide. Journal of Agricultural and Food Chemistry, 66(50), 13217–13227. https://doi.org/10.1021/acs.jafc.8b05038.
CAS
Article
PubMed
Google Scholar
Seo, H., Kim, S., Son, H. F., Sagong, H.-Y., Joo, S., & Kim, K.-J. (2019). Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochemical and Biophysical Research Communications, 508(1), 250–255. https://doi.org/10.1016/j.bbrc.2018.11.087.
CAS
Article
PubMed
Google Scholar
Moog, D., Schmitt, J., Senger, J., Zarzycki, J., Rexer, K.-H., Linne, U., Erb, T., & Maier, U. G. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 18(1), 171. https://doi.org/10.1186/s12934-019-1220-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sagong, H.-Y., Seo, H., Kim, T., Son, H. F., Joo, S., Lee, S. H., Kim, S., Woo, J. S., Hwang, S. Y., & Kim, K.-J. (2020). Decomposition of the PET Film by MHETase using exo-PETase function. ACS Catalysis, 10(8), 4805–4812. https://doi.org/10.1021/acscatal.9b05604.
CAS
Article
Google Scholar
Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593. https://doi.org/10.1111/jam.13472.
CAS
Article
PubMed
Google Scholar
Ibiene, A. A., Stanley, H. O., & Immanuel, O. M. (2013). Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger Delta Mangrove Swamp. Nigerian Journal of Biotechnology, 26, 68–78. https://doi.org/10.4314/njb.v26i1.
Article
Google Scholar
Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3. Biotech, 5(1), 81–86. https://doi.org/10.1007/s13205-014-0205-1.
Article
Google Scholar
Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62–67.
CAS
Article
Google Scholar
Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x.
CAS
Article
PubMed
Google Scholar
Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72(2), 346–352. https://doi.org/10.1007/s00253-005-0259-4.
CAS
Article
PubMed
Google Scholar
Obradors, N., & Aguilar, J. (1991). Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Applied and Environmental Microbiology, 57(8), 2383–2388.
CAS
Article
Google Scholar
Elbanna, K., Lütke-Eversloh, T., Jendrossek, D., Luftmann, H., & Steinbüchel, A. (2004). Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Archives of Microbiology, 182(2-3), 212–225. https://doi.org/10.1007/s00203-004-0715-z.
CAS
Article
PubMed
Google Scholar
Ruiz, C., Main, T., Hilliard, N. P., & Howard, G. T. (1999). Purification and characterization of twopolyurethanase enzymes from Pseudomonas chlororaphis. International Biodeterioration & Biodegradation, 43(1), 43–47. https://doi.org/10.1016/S0964-8305(98)00067-5.
CAS
Article
Google Scholar
Howard, G. T., & Blake, R. C. (1998). Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. International Biodeterioration & Biodegradation, 4(42), 213–220.
Article
Google Scholar
Yoon, M. G., Jeon, H. J., & Kim, M. N. (2012). Biodegradation of Polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3(4), 1–8. https://doi.org/10.4172/2155-6199.1000145.
CAS
Article
Google Scholar
Raaman, N., Rajitha, N., Jayshree, A., & Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. Journal of Academia and Industrial Research, 16, 313–316.
Google Scholar
Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Biodegradation of plastic waste using marine micro-organisms (pp. 195–201). https://doi.org/10.1007/978-981-15-0532-4_20
Awasthi, S., Srivastava, N., Singh, T., Tiwary, D., & Mishra, P. K. (2017). Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech, 7(1), 73. https://doi.org/10.1007/s13205-017-0699-4.
Article
PubMed
PubMed Central
Google Scholar
Brandon, A. M., Gao, S.-H., Tian, R., Ning, D., Yang, S.-S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301.
CAS
Article
Google Scholar
Yang, J., Yang, Y., Wu, W.-M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a.
CAS
Article
Google Scholar
Bombelli, P., Howe, C. J., & Bertocchini, F. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology: CB, 27(8), R292–R293. https://doi.org/10.1016/j.cub.2017.02.060.
CAS
Article
PubMed
Google Scholar
Kawai, F., Kawabata, T., & Oda, M. (2020). Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustainable Chemistry & Engineering, 8(24), 8894–8908. https://doi.org/10.1021/acssuschemeng.0c01638.
CAS
Article
Google Scholar
Chen, Z., Wang, Y., Cheng, Y., Wang, X., Tong, S., Yang, H., & Wang, Z. (2020). Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. The Science of the Total Environment, 709, 136138. https://doi.org/10.1016/j.scitotenv.2019.136138.
CAS
Article
PubMed
Google Scholar