Skip to main content
Log in

Nanobody-Dependent Detection of Microcystis aeruginosa by ELISA and Thermal Lens Spectrometry

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanobodies against cell surface antigens of toxic cyanobacteria Microcystis aeruginosa were recovered by whole-cell biopanning of a naïve phage display library of nanobodies. Six unique sequences were identified and three sub-cloned and purified as fusion immunoreagents together with either green fluorescent protein or AviTag to be used for diagnostics. The yields of nanobody constructs were in the range of 5–10 mg/l and their specificity and sensitivity was initially evaluated by immunofluorescence and by fluorescent enzyme-linked immunosorbent assay (ELISA) using fluorescent nanobodies. The ELISA data confirmed the nanobody specificity but showed that the saturation of the fluorescence signal already in the presence of few hundreds of cells limited the dynamic range of the method. As an alternative, Avi-tagged nanobodies were used in combination with streptavidin-linked horseradish peroxidase for developing a diagnostic colorimetric cell ELISA, the limit-of-detection of which was 3.2 and 4.5 cells/ml for the two tested cyanobacteria strains, whereas the linear range of the assay was expanded from 10 to 10,000 cells. The fluorescent nanobodies were finally exploited for quantifying cyanobacteria by thermal lens spectrometry (TLS) that enabled to reach a limit-of-detection of 1.2 cells/ml and provided a linear range of measurement between 0 and 10,000 cells. No cross-reactivity with unrelated microalgae was detected and both colorimetric ELISA and TLS provided a linear range of detection of few logs. The data indicate that nanobodies are suitable capture reagents and that both TLS and colorimetric ELISA are reliable to monitor variations of cyanobacteria populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Data and material will be made available to any interested person.

Code Availability

Not applicable.

References

  1. Barrington, D. J., Xiao, X., Cogginns, L., & Ghadouani, A. (2015). Control and management of harmful algal blooms. In L. M. Botana, M. C. Louzao, & N. Vilarino (Eds.), Climate change and marine and freshwater toxins (pp. 313–357). Walter de Gruyter.

  2. Sivonen, K., & Jones, G. (1999). Cyanobacterial toxins. In I. Chorus & J. Bartram (Eds.), Toxic Cyanobacteria in water: A guide to their public health consequences, monitoring and management (pp. 41–111). E & FN Spon.

  3. Brookes, J. D., & Ganf, G. G. (2001). Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. Journal of Plankton Research, 23(12), 1399–1411.

    Article  Google Scholar 

  4. Buratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., & Funari, E. (2017). Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology, 91(3), 1049–1130.

    Article  CAS  Google Scholar 

  5. Humpage, R. A., & Falconer, R. I. (1999). Microcystin-LR and liver tumor promotion: effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environmental Toxicology, 14(1), 61–75.

    Article  CAS  Google Scholar 

  6. Oishi, S., & Watanabe, M. F. (1986). Acute toxicity of Microcystis aeruginosa and its cardiovascular effects. Environmental Research, 40(2), 518–524.

    Article  CAS  Google Scholar 

  7. Vilar, M. C. P., de Araújo-Castro, C. M. V., & Moura, A. N. (2014). Acute toxicity of Microcystis spp. (Cyanobacteria) bloom on Moina minuta (Cladocera) in a tropical reservoir, Northeastern Brazil. Ecotoxicology and Environmental Contamination, 9, 93–98.

    Article  Google Scholar 

  8. El-Shehawy, R., Gorokhova, E., Piñas, F. F., & Campo, F. F. (2012). Global warming and hepatotoxin production by cyanobacteria: What can we learn from experiments? Water Research, 46(5), 1420–1429.

    Article  CAS  Google Scholar 

  9. Blanco, Y., Moreno-Paz, M., & Parro, V. (2017). Experimental protocol for detecting cyanobacteria in liquid and solid samples with an antibody microarray chip. Journal of Visualized Experiments, 120, 54994.

    Google Scholar 

  10. Crepin, R., Veggiani, G., Djender, S., Beugnet, A., Planeix, F., Pichon, C., Moutel, S., Amigorena, S., Perez, F., Ghinea, N., & de Marco, A. (2017). Whole-cell biopanning with a synthetic phage display library of nanobodies enabled the recovery of follicle-stimulating hormone receptor inhibitors. Biochemical and Biophysical Research Communications, 493(4), 1567–1572.

    Article  CAS  Google Scholar 

  11. Crépin, R., Gentien, D., Duché, A., Rapinat, A., Reyes, C., Némati, F., Massonnet, G., Decaudin, D., Djender, S., Moutel, S., Desrumeaux, K., Cassoux, N., Piperno-Neumann, S., Amigorena, S., Perez, F., Roman-Roman, S., & de Marco, A. (2017). Nanobodies against surface biomarkers enable the analysis of tumor genetic heterogeneity in uveal melanoma patient-derived xenografts. Pigment Cell & Melanoma Research, 30(3), 317–327.

    Article  Google Scholar 

  12. Mazzega, E., Beran, A., Cabrini, M., & de Marco, A. (2019). In vitro Isolation of nanobodies for selective Alexandrium minutum recognition: A model for convenient development of dedicated immunoreagents to study and diagnostic toxic unicellular algae. Harmful Algae, 82, 44–51.

    Article  CAS  Google Scholar 

  13. Djender, S., Schneider, A., Beugnet, A., Crepin, R., Desrumeaux, K. E., Romani, C., Moutel, S., Perez, F., & de Marco, A. (2014). Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microbial Cell Factories, 13(1), 140.

    Article  Google Scholar 

  14. Veggiani, G., Giabbai, B., Semrau, M. S., Medagli, B., Riccio, V., Bajc, G., Storici, P., & de Marco, A. (2020). Comparative analysis of fusion tags used to functionalize recombinant antibodies. Protein Expression and Purification, 166, 105505.

    Article  CAS  Google Scholar 

  15. Liu, M., & Franko, M. (2014). Progress in thermal lens spectrometry and its application in microscale analytical devices. Critical Reviews in Analytical Chemistry, 44(4), 328–353.

    Article  CAS  Google Scholar 

  16. Pawlak, M., Pal, S., Scholz, S., Ludwig, A., & Wieck, A. D. (2018). Simultaneous measurement of thermal conductivity and diffusivity of an undoped Al0.33Ga0.67As thin film epitaxially grown on a heavily Zn doped GaAs using spectrally-resolved modulated photothermal infrared radiometry. Thermochimica Acta, 662, 69–74.

    Article  CAS  Google Scholar 

  17. Pawlak, M. (2019). Photothermal, photocarrier, and photoluminescence phenomena in semiconductors studied using spectrally resolved modulated infrared radiometry: physics and applications. Journal of Applied Physics, 126(15), 150902.

    Article  Google Scholar 

  18. Pawlak, M., Jukam, N., Kruck, T., Dziczek, D., Ludwig, A., & Wieck, A. D. (2020). Measurement of thermal transport properties of selected superlattice and thin films using frequency-domain photothermal infrared radiometry. Measurement, 166, 108226.

    Article  Google Scholar 

  19. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews, 35(2), 171–205.

    Article  CAS  Google Scholar 

  20. Monegal, A., Ami, D., Martinelli, C., Huang, H., Aliprandi, M., Capasso, P., Francavilla, C., Ossolengo, G., & de Marco, A. (2009). Immunological application of single domain llama recombinant antibodies isolated from a naïve library. Protein Engineering, Design & Selection, 22(4), 273–280.

    Article  CAS  Google Scholar 

  21. Popovic, M., Mazzega, E., Toffoletto, B., & de Marco, A. (2018). Isolation of anti-extra-cellular vesicle single-domain antibodies by direct panning on vesicle-enriched fractions. Microbial Cell Factories, 17(1), 6.

    Article  Google Scholar 

  22. Mazzega, E., & de Marco, A. (2018). Engineered cross-reacting nanobodies simplify comparative oncology between humans and dogs. Veterinary and Comparative Oncology, 16(1), E202–E206.

    Article  CAS  Google Scholar 

  23. Veggiani, G., & de Marco, A. (2011). Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Protein Expression and Purification, 79(1), 111–114.

    Article  CAS  Google Scholar 

  24. Fischer, M., & Georges, J. (1998). Limitations arising in the study of the fluorescence quenching of rhodamine 6G by iodides using cw-laser thermal lens spectrometry. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 54(1), 101–110.

    Article  Google Scholar 

  25. Estupiñan Lopez, C., Dominguez, C., & de Araujo, R. (2013). Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement. Optics Express, 21(15), 18592–18601.

    Article  Google Scholar 

  26. Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125.

    Article  CAS  Google Scholar 

  27. Ambrosetti, E., Paoletti, P., Bosco, A., Parisse, P., Scaini, D., Tagliabue, E., de Marco, A., & Casalis, L. (2017). Quantification of circulating cancer biomarkers via sensitive topographic measurements on single binder nanoarrays. ACS Omega, 2(6), 2618–2629.

    Article  CAS  Google Scholar 

  28. Bernardinelli, G., Oloketuyi, S., Werner, S. F., Mazzega, E., Högberg, B., & de Marco, A. (2020). A compact nanobody-DNAzyme conjugate enables antigen detection and signal amplification. New Biotechnology, 56, 1–8.

    Article  CAS  Google Scholar 

  29. Oloketuyi, S., Mazzega, E., Zavašnik, J., Pungjunum, K., Kalcher, K., de Marco, A., & Mehmeti, E. (2020). Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosensors & Bioelectronics, 54, 112052.

    Article  Google Scholar 

  30. González-Morales, D., Valencia, A., Díaz-Nuñez, A., Fuentes-Estrada, M., López-Santos, O., & García-Beltrán, O. (2020). Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. Sensors, 20(3), 906.

    Article  Google Scholar 

  31. Tran, C. D., & Franko, M. (2010). Thermal lens spectroscopy. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 1–32). John Wiley.

  32. Marinković, B. P., Delneri, A., Rabasović, M. S., Terzić, M., Franko, M., & Šević, D. (2014). Investigation and detection of cyanobacterial Cr-phycoerythrin by laser based techniques. Journal of the Serbian Chemical Society, 79(2), 185–198.

    Article  Google Scholar 

  33. Franko, M., Liu, M., Boškin, A., Delneri, A., & Proskurnin, M. A. (2016). Fast Screening Techniques for neurotoxigenic substances and other toxicants and pollutants based on thermal lensing and microfluidic chips. Analytical Sciences, 32(1), 23–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OGF, SFO, EM, and HB performed the experiments. AB and MC prepared the microalgae. DK and MF supervised the TLS experiments. AdM supervised the nanobody-related experiments. MF and AdM conceived the project. All the authors contributed to write the manuscript.

Corresponding author

Correspondence to Ario de Marco.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folorunsho, O.G., Oloketuyi, S.F., Mazzega, E. et al. Nanobody-Dependent Detection of Microcystis aeruginosa by ELISA and Thermal Lens Spectrometry. Appl Biochem Biotechnol 193, 2729–2741 (2021). https://doi.org/10.1007/s12010-021-03552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03552-6

Keywords

Navigation