Chen, Y., Liu, Q., & Guo, D. (2020). Emerging , and pathogenesis. Journal of Medical Virology, 92(4), 418–423.
CAS
PubMed
PubMed Central
Google Scholar
Yount, B., Curtis, K. M., Fritz, E. A., Hensley, L. E., Jahrling, P. B., Prentice, E., Denison, M. R., Geisbert, T. W., & Baric, R. S. (2003). Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. PNAS., 100(22), 12995–13000.
CAS
PubMed
PubMed Central
Google Scholar
Jiang, H., Li, Y., Zhang, H. N., Wang, W., Yang, X., Qi, H., Li, H., Men, D., Zhou, J., & Tao, S. C. (2020). Global profiling of SARS-CoV-2 specific IgG/IgM responses of convalescents using a proteome microarray. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17488-8.
De Haan et al. (1998). Coronavirus particle assembly: Primary structure requirements of the membrane protein. Journal of Virology, 172(8).
Kim, J. C., Spence, R. A., Currier, P. F., Lu, X., & Denison, M. R. (1995). Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor. Virology., 208(1), 1–8.
CAS
PubMed
Google Scholar
Kanjanahaluethai, A., Jukneliene, D., & Baker, S. C. (2003). Identification of the murine coronavirus MP1 cleavage site recognized by papain-like proteinase 2. Journal of Virology, 77(13), 7376–7382.
CAS
PubMed
PubMed Central
Google Scholar
Mousavizadeha, L., Sorayya Ghasemi, S. (2020). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection. https://doi.org/10.1016/j.jmii.2020.03.022.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W. J., Wang, D., Xu, W., Holmes, E. C., Gao, G. F., Wu, G., Chen, W., Shi, W., & Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet., 395(10224), 565–574.
CAS
PubMed
PubMed Central
Google Scholar
Bárcena, et al. (2009). Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the corona virion. PNAS., 106(2), 582–587.
PubMed
PubMed Central
Google Scholar
Neuman, B. W., Adair, B. D., Yoshioka, C., Quispe, J. D., Orca, G., Kuhn, P., Milligan, R. A., Yeager, M., & Buchmeier, M. J. (2006). Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of Virology, 80(16), 7918–7928.
CAS
PubMed
PubMed Central
Google Scholar
Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., & Warren, G. (1984). Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature, 308(5961), 751–752.
CAS
PubMed
PubMed Central
Google Scholar
Engin, A. B., Nikitovic, D., Neagu, M., Henrich-Noack, P., Docea, A. O., Shtilman, M. I., Golokhvast, K., & Tsatsakis, A. M. (2017). Mechanistic understanding of nanoparticles interactions with extracellular matrix: The cell and immune system. Particle and Fibre Toxicology, 14(1), 22.
PubMed
PubMed Central
Google Scholar
Delfosse, V. C., et al. (2013). In vivo short-term exposure to residual oil fly ash impairs pulmonary innate immune response against environmental mycobacterium infection. Environmental Toxicology, 30(5), 589–596.
PubMed
Google Scholar
Doceaao, C. D., et al. (2019). Study design for the determination of toxicity from long-term-low-dose exposure to complex mixtures of pesticides, food additives and lifestyle products. Toxicology Letters, 258, 179.
Google Scholar
Doceaao, C. D., et al. (2018). Six months exposure to a real life mixture of 13 chemicals below individual NOAELs induced non monotonic sex-dependent biochemical and redox status changes in rats. Food and Chemical Toxicology, 115, 470–481.
Google Scholar
Jaume, M., Yip, M. S., Cheung, C. Y., Leung, H. L., Li, P. H., Kien, F., Dutry, I., Callendret, B., Escriou, N., Altmeyer, R., Nal, B., Daeron, M., Bruzzone, R., & Peiris, J. S. M. (2011). Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH and cysteine protease-independent FcγR pathway. Journal of Virology, 85(20), 10582–10597.
CAS
PubMed
PubMed Central
Google Scholar
Yasui, F., Kai, C., Kitabatake, M., Inoue, S., Yoneda, M., Yokochi, S., Kase, R., Sekiguchi, S., Morita, K., Hishima, T., Suzuki, H., Karamatsu, K., Yasutomi, Y., Shida, H., Kidokoro, M., Mizuno, K., Matsushima, K., & Kohara, M. (2008). Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. Journal of Immunology, 181(9), 6337–6348.
CAS
Google Scholar
Yip, M. S., et al. (2016). Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Medical Journal, 22, 25–31.
CAS
PubMed
Google Scholar
Wang, Q., Zhang, L., Kuwahara, K., Li, L., Liu, Z., Li, T., Zhu, H., Liu, J., Xu, Y., Xie, J., Morioka, H., Sakaguchi, N., Qin, C., & Liu, G. (2016). Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infectious Diseases, 2(5), 361–376.
CAS
PubMed
PubMed Central
Google Scholar
Tan, W., et al. (2020). Viral kinetics and antibody responses in patients with COVID-19. Preprint at Medrxiv. https://doi.org/10.1101/2020.03.24.200423822020.
Pierson, T. C., Fremont, D. H., Kuhn, R. J., & Diamond, M. S. (2008). Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: Implications for vaccine development. Cell Host & Microbe, 4(3), 229–238.
CAS
Google Scholar
Yuan, F., et al. (2005). Influence of FcγR IIA and MBL polymorphisms on severe acute respiratory syndrome. Tissue Antigens, 66(4), 291–296.
CAS
PubMed
PubMed Central
Google Scholar
Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Gralinski, L., Totura, A., Heise, M., & Baric, R. S. (2011). A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. Journal of Virology, 85(23), 12201–12215.
CAS
PubMed
PubMed Central
Google Scholar
Dan-Dan, L., & Qi-Han, L. (2021). SARS-CoV-2: Vaccines in the pandemic era. Military Medical Research, 8, 1.
Google Scholar
Zhong, N., Zheng, B. J., Li, Y. M., Poon, L. L. M., Xie, Z. H., Chan, K. H., Li, P. H., Tan, S. Y., Chang, Q., Xie, J. P., Liu, X. Q., Xu, J., Li, D. X., Yuen, K. Y., Peiris, J. S. M., & Guan, Y. (2003). Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China. The Lancet, 362(9393), 1353–1358.
CAS
Google Scholar
Peiris, J. S. M., et al. (2004). Severe acute respiratory syndrome. Nature Medicine, 10(12), 88–97.
Google Scholar
Pyrc, K., Berkhout, B., & van der Hoek, L. (2007). Identification of new human coronaviruses. Expert Review of Anti-Infective Therapy, 5(2), 245–253.
CAS
PubMed
Google Scholar
Prabakaran, P., Xiao, X., & Dimitrov, D. S. (2004). A model of the ACE2 structure and function as a SARS-CoV receptor. Biochemical and Biophysical Research Communications, 314(1), 235–241.
CAS
PubMed
Google Scholar
Ghosh, S., et al. (2020). siRNA could be a potential therapy for COVID-19. EXCLI Journal, 19, 528–531.
PubMed
PubMed Central
Google Scholar
Uludag, H., et al. (2020). Prospects of RNAi therapy of COVID 19. Frontiers in Bioengineering and Biotechnology, 8, 916.
PubMed
PubMed Central
Google Scholar
Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus disease. ACS Central Science, 6(3), 315–331.
CAS
PubMed
Google Scholar
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263.
CAS
PubMed
PubMed Central
Google Scholar
Alam, T. (2017). Nanocarriers as treatment modalities for hypertension. Drug Delivery, 24(1), 358–369.
CAS
PubMed
PubMed Central
Google Scholar
Hodgson, J. (2020). The pandemic pipeline. Nature Biotechnology, 38(5), 523–532. https://doi.org/10.1038/d41587-02000005-z.
CAS
Article
PubMed
Google Scholar
Conti, D. S., Brewer, D., Grashik, J., Avasarala, S., & da Rocha, S. R. P. (2014). Poly (amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Molecular Pharmaceutics, 11(6), 1808–1822.
CAS
PubMed
PubMed Central
Google Scholar
Pichichero, M. E. (2020). Understanding messenger RNA and other SARS-CoV-2 vaccines. Medscape. https://www.medscape.com/viewarticle/942654#vp_3.
Black, S. (2015). The costs and effectiveness of large phase III pre-licensure vaccine clinical trials. Expert Review of Vaccines, 14(12), 1543–1548.
CAS
PubMed
Google Scholar
Wouters-wesseling, W., et al. (2002). Effect of a complete nutritional supplement on antibody response to influenza vaccine in elderly people. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57, 563–566.
Google Scholar
Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., Crackower, M. A., Fukamizu, A., Hui, C. C., Hein, L., Uhlig, S., Slutsky, A. S., Jiang, C., & Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature., 436(7047), 112–116.
CAS
PubMed
PubMed Central
Google Scholar
Ventura, M. T., Casciaro, M., Gangemi, S., & Buquicchio, R. (2017). Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clinical and Molecular Allergy, 15(1), 21.
PubMed
PubMed Central
Google Scholar
Savy, M., et al. (2009). Landscape analysis of interactions between nutrition and vaccine responses in children. The Journal of Nutrition, 139, 2154–2218.
Google Scholar
Arvas, A. (2014). Vaccination in patients with immunosuppression. Turkish Pediatrics, 49(3), 181–185.
Google Scholar
Keusch, G. T. (2012). Nutritional effects on response of children in developing countries to respiratory tract pathogens: implications for vaccine development. Reviews of Infectious Diseases, 13, 486–491.
Google Scholar
Omran, G. A. (2019). Hematological and immunological impairment following in-utero and postnatal exposure to aluminum sulfate in female offspring of albino rats. Immunopharmacology & Immunotoxicology, 41(1), 40–47.
CAS
Google Scholar
Franceschi, C., Salvioli, S., Garagnani, P., de Eguileor, M., Monti, D., & Capri, M. (2017). Immunobiography and the heterogeneity of immune responses in the elderly: A focus on inflammaging and trained immunity. Frontiers in Immunology, 8, 982.
PubMed
PubMed Central
Google Scholar
Yan, B. (2019). microRNAs in cardiovascular disease: Small molecules but big roles. Current Topics in Medicinal Chemistry, 19(21), 1918–1947.
CAS
PubMed
Google Scholar
Liu, J., & Guo, B. (2004). RNA-based therapeutics for colorectal cancer: Updates and future directions. Pharmacological Research, 152, 104550.
Google Scholar
Buchholz, U. J., Bukreyev, A., Yang, L., Lamirande, E. W., Murphy, B. R., Subbarao, K., & Collins, P. L. (2004). Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9804–9809.
CAS
PubMed
PubMed Central
Google Scholar
Tipnis, S. R., Hooper, N. M., Hyde, R., Karran, E., Christie, G., & Turner, A. J. (2000). A human homolog of angiotensin-converting enzyme: Cloning and functional expression as a captopril-insensitive carboxypeptidase. The Journal of Biological Chemistry, 275(43), 33238–33243.
CAS
PubMed
Google Scholar
DeStefano, F., et al. (2019). Principal controversies in vaccine safety in the United States. Clinical Infectious Diseases, 69, 26–731.
Google Scholar
Skalny, A. V., et al. (2020). Zinc and respiratory tract infections: Perspectives for COVID-19 (review). International Journal of Molecular Medicine, 46, 17–26.
CAS
PubMed
PubMed Central
Google Scholar
Eliakim, A., Swindt, C., Zaldivar, F., Casali, P., & Cooper, D. M. (2006). Reduced tetanus antibody titers in overweight children. Autoimmunity., 39(2), 137–141.
CAS
PubMed
PubMed Central
Google Scholar
Calina, D., et al. (2016). Etiological diagnosis and pharmaco therapeutic management of parap-neumonic pleurisy. Farmacia., 64, 946–952.
CAS
Google Scholar
Lee, N., et al. (2006). Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome. Journal of Clinical Virology, 35(2), 179–184.
CAS
PubMed
Google Scholar