Skip to main content
Log in

Flavonoid-Decorated Nano-gold for Antimicrobial Therapy Against Gram-negative Bacteria Escherichia coli

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nano-gold (Aunps) have emerged as promising options that exhibit unique features discrete from traditional materials suited for biomedical applications. Aunps were synthesized using flavonoid quercetin (Q) as reducing agent, and resultant nanoparticles were further conjugated with the flavonoid. The resultant nano-system was expected to perform a dual role as antibacterial and as antioxidant agent. Nano-gold surface plasmon peaks were recorded at 560 nm with size around 62 nm and having slim distribution pattern. Spherical particle with smooth surface was observed under TEM and AFM studies. TEM micrographs confirmed a homogeneous particle population of size around 30 nm. Quercetin association to nano-gold was corroborated through FTIR and EDAX analysis. Antioxidant nature of nano-gold prevented rapid oxidation of brilliant cresyl blue dye, in presence of sodium hypochlorite. Antimicrobial action of QuAunp was tested against Gram-negative bacteria Escherichia coli. Nano-gold designed produced a minimum inhibitory concentration of 7.6 μg/ml and minimum bactericidal concentration 10.5 μg/ml against E. coli. Further TEM analysis and membrane permeability studies revealed the impact of QuAunps on bacterial membrane leading to cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All authors declare that all data and materials as well as software application or custom code support their published claims and comply with field standards.

Code Availability

This is not required for the current work.

References

  1. Brown, E. D., & Wright, G. D. (2016). Antibacterial drug discovery in the resistance era. Nature, 529(7586), 336–343. https://doi.org/10.1038/nature17042.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, Y. Y., & Jiang, X. Y. (2013). Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale, 5(18), 8340–8350. https://doi.org/10.1039/c3nr01990j.

    Article  CAS  PubMed  Google Scholar 

  3. Alekshun, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6), 1037–1050. https://doi.org/10.1016/j.cell.2007.03.004.

    Article  CAS  PubMed  Google Scholar 

  4. Welte, T. (2016). New antibiotic development: the need versus the costs. The Lancet Infectious Diseases, 16(4), 386–387. https://doi.org/10.1016/S1473-3099(16)00068-2.

    Article  PubMed  Google Scholar 

  5. Yarlagadda, V., Akkapeddi, P., Manjunath, G. B., & Haldar, J. (2014). Membrane active vancomycin analogues: a strategy to combat bacterial resistance. Journal of Medicinal Chemistry, 57(11), 4558–4568. https://doi.org/10.1021/jm500270w.

    Article  CAS  PubMed  Google Scholar 

  6. Bastida, A., Hidalgo, A., Chiara, J. L., Torrado, M., Corzana, F., Perez-Canadillas, J. M., Groves, P., Garcia-Junceda, E., Gonzalez, C., Jimenez-Barbero, J., & Asensio, J. L. (2006). Exploring the use of conformationally locked aminoglycosides as a new strategy to overcome bacterial resistance. Journal of the American Chemical Society, 128(1), 100–116. https://doi.org/10.1021/ja0543144.

    Article  CAS  PubMed  Google Scholar 

  7. Davis, M. E., Chen, Z., & Shin, D. M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7(9), 771–782. https://doi.org/10.1038/nrd2614.

    Article  CAS  PubMed  Google Scholar 

  8. Peer, D., Karp, J. M., Hong, S., FaroKhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387.

    Article  CAS  PubMed  Google Scholar 

  9. De, M., Ghosh, P. S., & Rotello, V. M. (2008). Applications of nanoparticles in biology. Advanced Materials, 20(22), 4225–4424. https://doi.org/10.1002/adma.200703183.

    Article  CAS  Google Scholar 

  10. Lv, M., Su, S., He, Y., Huang, Q., Hu, W., Li, D., Fan, C., & Lee, S. T. (2010). Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Advanced Materials, 22(48), 5463–5467. https://doi.org/10.1002/adma.201001934.

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Gutierrez, F., Thi, E. P., Silverman, J. M., Oliveira, C. C. D., Svensson, S. L., Hoek, A. V., Sanchez, E. M., Reiner, N. E., Gaynor, E. C., Pryzdial, E. L. G., Conway, E. M., Orrantia, E., Ruiz, F., Av-Gay, Y., & Bach, H. (2012). Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine, 8(3), 328–336. https://doi.org/10.1016/j.nano.2011.06.014.

    Article  CAS  PubMed  Google Scholar 

  12. Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie. International Edition, 52(6), 1636–1653. https://doi.org/10.1002/anie.201205923.

    Article  CAS  PubMed  Google Scholar 

  13. Guan, Y., Chen, J. H., Qi, X. M., Chen, G. G., Peng, F., & Sun, R. C. (2015). Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Industrial and Engineering Chemistry Research, 54(30), 7393–7400. https://doi.org/10.1021/acs.iecr.5b01532.

    Article  CAS  Google Scholar 

  14. Kavitha, T., Gopalan, A. I., Lee, K. P., & Park, S. Y. (2012). Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids. Carbon, 50(8), 2994–3000. https://doi.org/10.1016/j.carbon.2012.02.082.

    Article  CAS  Google Scholar 

  15. Espitia, P. J. P., Soares, N. D. F., Coimbra, J. S. D., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology, 5(5), 1447–1464. https://doi.org/10.1007/s11947-012-0797-6.

    Article  CAS  Google Scholar 

  16. Gao, N., Chen, Y. J., & Jiang, J. (2013). Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property. ACS Applied Materials & Interfaces, 5(21), 11307–11314. https://doi.org/10.1021/am403538j.

    Article  CAS  Google Scholar 

  17. Feng, L. Z., Zhang, S. A., & Liu, Z. A. (2011). Graphene based gene transfection. Nanoscale, 3(3), 1252–1257. https://doi.org/10.1039/c0nr00680g.

    Article  CAS  PubMed  Google Scholar 

  18. Nellore, B. P. V., Kanchanapally, R., Pedraza, F., Sinha, S. S., Pramanik, A., Hamme, A. T., Arslan, Z., Sardar, D., & Ray, P. C. (2015). Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Applied Materials & Interfaces, 7(34), 19210–19218. https://doi.org/10.1021/acsami.5b05012.

    Article  CAS  Google Scholar 

  19. Kang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 24(13), 6409–6413. https://doi.org/10.1021/la800951v.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, C. Y., & Zepp, R. G. (2015). Probing photosensitization by functionalized carbon nanotubes. Environmental Science & Technology, 49(23), 13835–13843. https://doi.org/10.1021/acs.est.5b01041.

    Article  CAS  Google Scholar 

  21. Hertog, M. G. L., Hollman, P. C. H., & Venema, D. P. (1992). Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. Journal of Agricultural and Food Chemistry, 40(9), 1591–1598. https://doi.org/10.1021/jf00021a023.

    Article  CAS  Google Scholar 

  22. Kerem, Z., Bravdo, B. A., Shoseyov, O., & Tugendhaft, Y. (2004). Rapid liquid chromatography–ultraviolet determination of organic acids and phenolic compounds in red wine and must. Journal of Chromatography. A, 1052(1-2), 211–215. https://doi.org/10.1016/j.chroma.2004.08.105.

    Article  CAS  PubMed  Google Scholar 

  23. Formica, J. V., & Regelson, W. (1995). Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology, 33(12), 1061–1080. https://doi.org/10.1016/0278-6915(95)00077-1.

    Article  CAS  PubMed  Google Scholar 

  24. Kanadaswami, C., Lee, L. T., Lee, P. P., Hwang, J. J., Ke, F. C., Huang, Y. T., & Lee, M. T. (2005). The antitumor activities of flavonoids. Vivo, 19(5), 895–909.

    CAS  Google Scholar 

  25. Comalada, M., Camuesco, D., Sierra, S., Ballester, I., Xaus, J., Galvez, J., & Zarzuelo, A. (2005). In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NFkappaB pathway. European Journal of Immunology, 35(2), 584–592. https://doi.org/10.1002/eji.200425778.

    Article  CAS  PubMed  Google Scholar 

  26. Scalia, S., & Mezzena, M. (2009). Incorporation of quercetin in lipid microparticles: effect on photo- and chemical-stability. Journal of Pharmaceutical and Biomedical Analysis, 49(1), 90–94. https://doi.org/10.1016/j.jpba.2008.10.011.

    Article  CAS  PubMed  Google Scholar 

  27. Calabrò, M. L., Tommasini, S., Donato, P., Raneri, D., Stancanelli, R., Ficarra, P., Ficarra, R., Costa, C., Catania, S., Rustichelli, C., & Gamberini, G. (2004). Effects of α- and β- cyclodextrin complexation on the physico-chemical properties and antioxidant activity of some 3-hydroxyflavones. Journal of Pharmaceutical and Biomedical Analysis, 35(2), 365–377. https://doi.org/10.1016/j.jpba.2003.12.005.

    Article  CAS  PubMed  Google Scholar 

  28. Pralhad, T., & Rajendrakumar, K. (2004). Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, Xray diffraction and SEM analysis. Journal of Pharmaceutical and Biomedical Analysis, 34(2), 333–339. https://doi.org/10.1016/S0731-7085(03)00529-6.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, Y., Haworth, I. S., Zuo, Z., Chow, M. S. S., & Chow, A. H. L. (2005). Physicochemical and structural characterization of quercetin beta cyclodextrin complexes. Journal of Pharmaceutical Sciences, 94(5), 1079–1089. https://doi.org/10.1002/jps.20325.

    Article  CAS  PubMed  Google Scholar 

  30. Yuan, Z. P., Chen, L. J., Fan, L. Y., Tang, M. H., Yang, G. L., Yang, H. S., Du, X. B., Wang, G. Q., Yao, W. X., Zhao, Q. M., Ye, B., Wang, R., Diao, P., Zhang, W., Wu, H. B., Zhao, X., & Wei, Y. Q. (2006). Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clinical Cancer Research, 12(10), 3193–3199. https://doi.org/10.1158/1078-0432.CCR-05-2365.

    Article  CAS  PubMed  Google Scholar 

  31. Frijlink, H. W., Eissens, A. C., Hefting, N. R., Poelstra, K., Lerk, C. F., & Meijer, D. K. (1991). The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharmaceutical Research, 8(1), 9–16. https://doi.org/10.1023/a:1015861719134.

    Article  CAS  PubMed  Google Scholar 

  32. Mu, X., & Zhong, Z. (2006). Preparation and properties of poly (vinyl alcohol) - stabilized liposomes. International Journal of Pharmaceutics, 318(1-2), 55–61. https://doi.org/10.1016/j.ijpharm.2006.03.016.

    Article  CAS  PubMed  Google Scholar 

  33. Balakrishnan, S., Bhat, F. A., Raja Singh, P., Mukherjee, S., Elumalai, P., Das, S., Patra, C. R., & Arunakaran, J. (2016). Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Proliferation, 49(6), 678–697. https://doi.org/10.1111/cpr.12296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das, S., Roy, P., Mondal, S., Bera, T., & Mukherjee, A. (2013). One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids and Surfaces. B, Biointerfaces, 107, 27–34. https://doi.org/10.1016/j.colsurfb.2013.01.061.

    Article  CAS  PubMed  Google Scholar 

  35. Islana, G. A., Das, S., Cacicedoa, M. L., Halder, A., Mukherjee, A., Cuestasc, M. L., Roy, P., Castro, G. R., & Mukherjee, A. (2019). Silybin-conjugated gold nanoparticles for antimicrobial chemotherapy against Gram-negative bacteria. Journal of Drug Delivery Science and Technology, 53, 101181. https://doi.org/10.1016/j.jddst.2019.101181.

    Article  CAS  Google Scholar 

  36. Rattanata, N., Klaynongsruang, S., Leelayuwat, C., Limpaiboon, T., Lulitanond, A., Boonsiri, P., Chio-Srichan, S., Soontaranon, S., Rugmai, S., & Daduang, J. (2016). Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens. International Journal of Nanomedicine, 11, 3347–3356. https://doi.org/10.2147/IJN.S109795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tyagi, H., Kushwaha, A., Kumar, A., & Aslam, M. (2016). A facile pH controlled citrate-based reduction method for gold nanoparticle synthesis at room temperature. Nanoscale Research Letters, 11(1), 362. https://doi.org/10.1186/s11671-016-1576-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rajesh Kumar, S., Priyatharshni, S., Babu, V. N., Mangalaraj, D., Viswanathan, C., Kannan, S., & Ponpandian, N. (2014). Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. Journal of Colloid and Interface Science, 436, 234–242. https://doi.org/10.1016/j.jcis.2014.08.064.

    Article  CAS  PubMed  Google Scholar 

  39. Noacco, N., Rodenak-Kladniew, B., García de Bravo, M., Castro, G. R., & Islan, G. A. Simple colorimetric method to determine the in vitro antioxidant activity of different monoterpenes. Analytical Biochemistry, 555, 59–66. https://doi.org/10.1016/j.ab.2018.06.007.

  40. Zhang, Y., But, P. H., Ooi, E. C. V., Xu, H. X., Delaney, G. D., Spencer, H. S. L., & Lee, S. F. (2007). Chemical properties, mode of action, and in vivo anti-herpes activities of a lignin carbohydrate complex from Prunella vulgaris. Antiviral Research, 75(3), 242–249. https://doi.org/10.1016/j.antiviral.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  41. Mukherjee, H., Ojha, D., Chandel, H. S., Bhattacharyya, S., Chatterjee, T. K., Mukherjee, P. K., Chakraborti, S., & Chattopadhyay, D. (2013). Anti-herpes virus activities of Achyranthes aspera: an Indian ethnomedicine, and its triterpene acid. Microbiological Research, 168(4), 238–244. https://doi.org/10.1016/j.micres.2012.11.002.

    Article  CAS  PubMed  Google Scholar 

  42. Loo, Y. Y., Rukayadi, Y., Nor-Khaizura, M. A., Kuan, C. H., Chieng, B. W., Nishibuchi, M., & Radu, S. (2018). In vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Frontiers in Microbiology, 9, 1555. https://doi.org/10.3389/fmicb.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Roy, P., Bhat, V. S., Saha, S., Sengupta, D., Das, S., Datta, S., & Hegde, G. (2020). Mesoporous carbon nanospheres derived from agro-waste as novel antimicrobial agents against gram-negative bacteria. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-020-11587-1.

  44. Moalin, M., Strijdonck, G. P., Beckers, M., Hagemen, G., Borm, P., Bast, A., & Haenen, G. R. (2011). A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 16(11), 9636–9650. https://doi.org/10.3390/molecules16119636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Devi, K. P., Suganthy, N., Kesika, P., & Pandian, S. K. (2008). Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 8(1), 38. https://doi.org/10.1186/1472-6882-8-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kehrer, J. P., & Klotz, L. O. (2015). Free radicals and related reactive species as mediators of tissue injury and disease: implications for health. Critical Reviews in Toxicology, 45(9), 765–798. https://doi.org/10.3109/10408444.2015.1074159.

    Article  CAS  PubMed  Google Scholar 

  47. Laverty, G., Gorman, S., & Gilmore, B. (2014). Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens, 3(3), 596–632. https://doi.org/10.3390/pathogens3030596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jacobsen, S. M., Stickler, D. J., Mobley, H. L., & Shirtliff, M. E. (2008). Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical Microbiology Reviews, 21(1), 26–59. https://doi.org/10.1128/CMR.00019-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bankier, C., Matharu, R. K., Cheong, Y. K., Ren, G. G., Cloutman-Green, E., & Ciric, L. Synergistic antibacterial effects of metallic nanoparticle combinations. Science Reports, 9(1), 16074. https://doi.org/10.1038/s41598-019-52473-2.

  50. Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., Sahar, A., Riley, M. A., & Rotello, V. M. (2014). Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 8(10), 10682–10686. https://doi.org/10.1021/nn5042625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. LeBel, M. (1988). Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy., 8(1), 3–33. https://doi.org/10.1002/j.1875-9114.

    Article  CAS  PubMed  Google Scholar 

  52. Dolev, M. B., Bernheim, R., Guo, S., Davies, P. L., & Braslavsky, I. (2016). Putting life on ice: bacteria that bind to frozen water. Journal of the Royal Society, Interface, 13(121), 20160210. https://doi.org/10.1098/rsif.2016.0210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Islan, G. A., Mukherjee, A., & Castro, G. R. (2015). Development of biopolymer nanocomposite for silver nanoparticles and ciprofloxacin controlled release. International Journal of Biological Macromolecules, 72, 740–750. https://doi.org/10.1016/j.ijbiomac.2014.09.020.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Dr. Suvadra and Mrs. Megha Jethwa. Dr. Tanay Pramanik and Dr. Partha Roy assisted in data interpretation. Dr. Partha Roy and Dr. Suvadra Das were responsible for drafting of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Suvadra Das.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Pramanik, T., Jethwa, M. et al. Flavonoid-Decorated Nano-gold for Antimicrobial Therapy Against Gram-negative Bacteria Escherichia coli. Appl Biochem Biotechnol 193, 1727–1743 (2021). https://doi.org/10.1007/s12010-021-03543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03543-7

Keywords

Navigation