Skip to main content

Advertisement

Log in

The Inhibitory Effect of Cyclodextrin on Oxygen Bioavailability Is a Key Factor for the Metabolic Flux Redistribution Toward Steroid Alcohols in Phytosterol Resting Cells Bioconversion

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, we tried to identify the mechanism why by which the steroid alcohols accumulated when hydroxypropyl-β-cyclodextrin (HP-β-CD) was present to enhance the sterol conversion rate. Compared with the bioconversion system without HP-β-CD, the reaction rate was greatly improved in presence of HP-β-CD, but the steroid alcohols largely accumulated concurrently. In a reaction system with an enhanced reaction rate, the higher intracellular NADH/NAD+ level was detected, and the production of steroid alcohols increased also. Mycobacterium neoaurum mutants with higher KshA activity (3-ketosteroid 9α-hydrolase, a monooxygenase hydroxylating the nucleus at C-9 at the expense of NAD(P)H consumption) reduced the steroid alcohol production, and in the meantime, the NADH/NAD+ level was decreased consequently. Further research found that oxygen availability was seriously inhibited by the cyclodextrin in a reaction system. These results indicated that NADH formed in the bioconversion was not properly regenerated via the respiratory chain because of the poor oxygen bioavailability. The inhibitory effect of cyclodextrin on oxygen bioavailability is a key factor for the metabolic flux redistribution toward steroid alcohols in phytosterol resting cells bioconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: Current state and prospects. Applied Microbiology and Biotechnology, 94(6), 1423–1447.

    Article  CAS  Google Scholar 

  2. Szentirrnai, A. (1990). Microbial physiology of sidechain degradation of sterols. Journal of Industrial Microbiology & Biotechnology, 6(2), 101–115.

    Article  Google Scholar 

  3. Rodríguez-García, A., Fernández-Alegrea, E., Morales, A., Sola-Landa, A., Lorrainec, J., Macdonald, S., Dovbnya, D., Smith, M. C. M., Donova, M., & Barreiro, C. (2016). Complete genome sequence of ‘Mycobacterium neoaurum’ NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. Journal of Biotechnology, 224, 64–65.

    Article  Google Scholar 

  4. van der Geize, R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H., Anderton, M. C., Sim, E., Dijkhuizen, L., Davies, J. E., Mohn, W. W., & Eltis, L. D. (2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proceedings of the National Academy of Sciences, 104(6), 1947–1952.

    Article  Google Scholar 

  5. Fernandez de las Herasa, L., van der Geizeb, R., Drzyzgaa, O., Pereraa, J., & Navarro Llorensa, J. M. (2012). Molecular characterization of three 3-ketosteroid-1-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. Journal of Steroid Biochemistry and Molecular Biology, 132, 271–281.

    Article  Google Scholar 

  6. Liu, H. H., Xu, L. Q., Yao, K., Xiong, L. B., Tao, X. Y., Liu, M., Wang, F. Q., & Wei, D. Z. (2018). Engineered 3-ketosteroid 9α-hydroxylases in Mycobacterium neoaurum: An efficient platform for production of steroid drugs. Applied and Environmental Microbiology, 84(14), e02777–e02717.

    Article  Google Scholar 

  7. Yeh, C. H., Kuo, Y. S., Chang, C. M., Liu, W. H., Sheu, M. L., & Meng, M. (2014). Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione. Microbial Cell Factories, 13, 130.

    PubMed  PubMed Central  Google Scholar 

  8. Yuan, J. J., Guan, Y. X., & Yao, S. J. (2017). Evaluation of biocompatible ionic liquids for their application in phytosterols bioconversion by Mycobacterium sp. resting cells. ACS Sustainable Chemistry & Engineering, 5(11), 10702–10709.

    Article  CAS  Google Scholar 

  9. Stefanov, S., Yankov, D., & Beschkov, V. (2006). Biotransformation of phytosterols to androstenedione in two phase water-oil systems. Chemical and Biochemical Engineering Quarterly, 20(4), 421–427.

    CAS  Google Scholar 

  10. Shen, Y. B., Wang, M., Li, H. N., Wang, Y. B., & Luo, J. M. (2012). Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. Journal of Industrial Microbiology & Biotechnology, 39(9), 1253–1259.

    Article  CAS  Google Scholar 

  11. Donova, M. V., Nikolayeva, V. M., Dovbnya, D. V., Gulevskaya, S. A., & Suzina, N. E. (2007). Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology, 153(6), 1981–1992.

    Article  CAS  Google Scholar 

  12. Khomutov, S. M., Sukhodolskaya, G. V., & Donova, M. V. (2017). The inhibitory effect of cyclodextrin on the degradation of 9α-hydroxyandrost-4-ene-3,17-dione by Mycobacterium sp. VKM Ac-1817D. Biocatalysis and Biotransformation, 25, 386–392.

    Article  Google Scholar 

  13. Shtratnikova, V. Y., Schelkunov, M. I., Dovbnya, D. V., Bragin, E. Y., & Donova, M. V. (2017). Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol. Applied Microbiology and Biotechnology, 101(11), 4659–4667.

    Article  CAS  Google Scholar 

  14. Gao, X. Q., Feng, J. X., Wang, X. D., Hua, Q., & Wei, D. Z. (2015). Enhanced steroid metabolites production by resting cell phytosterol bioconversion. Chemical and Biochemical Engineering Quarterly, 29(4), 567–573.

    Article  CAS  Google Scholar 

  15. Zhou, X. L., Zhang, Y., She, Y. B., Zhang, X., Xu, S. P., Shang, Z. H., Xia, M. L., & Wang, M. (2019). Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD+/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum. Bioresource Technology, 279, 209–217.

    Article  CAS  Google Scholar 

  16. Wang, X. D., Chen, R., Wu, Y. Y., Wang, D., & Wei, D. Z. (2020). Nitrate metabolism decreases the steroidal alcohol byproduct compared with ammonium in biotransformation of phytosterol to androstenedione by Mycobacterium neoaurum. Applied Biochemistry and Biotechnology, 190(4), 1553–1560.

    Article  CAS  Google Scholar 

  17. Yao, K., Xu, L. Q., Wang, F. Q., & Wei, D. Z. (2014). Characterization and engineering of 3-ketosteroid-Δ1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metabolic Engineering, 24, 181–191.

    Article  CAS  Google Scholar 

  18. Wang, X. D., Hua, C. L., Xu, X. W., & Wei, D. Z. (2019). Two-step bioprocess for reducing nucleus degradation in phytosterol bioconversion by Mycobacterium neoaurum NwIB-R10hsd4A. Applied Biochemistry and Biotechnology, 188(1), 138–146.

    Article  CAS  Google Scholar 

  19. Petrusma, M., van der Geize, R., & Dijkhuzzzizen, L. (2014). 3-Ketosteroid 9a-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. Antonie Van Leeuwenhoek, 106(1), 157–172.

    Article  CAS  Google Scholar 

  20. Chen, X. L., Li, S. B., & Liu, L. M. (2014). Engineering redox balance through cofactor systems. Trends in Biotechnology, 32(6), 337–343.

    Article  CAS  Google Scholar 

  21. Van Hoek, M. J., & Merks, R. M. H. (2012). Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Systems Biology, 6, 22.

    Article  Google Scholar 

  22. Capyk, J. K., Kalscheuer, R., Stewart, G. R., Liu, J., Kwon, H., Zhao, R., Okamoto, S., Jacobs Jr., W. R., Eltis, L. D., & Mohn, W. W. (2009). Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27-steroids. Journal of Biological Chemistry, 284(51), 35534–35542.

    Article  CAS  Google Scholar 

  23. Badejo, A. C., Chung, W. H., Kim, N. S., Chai, J. C., Lee, Y. S., Jung, K. H., Kim, H. J., & Chai, Y. G. (2014). Energy metabolism in Mycobacterium gilvum PYR-GCK: Insights from transcript expression analyses following two states of induction. PLoS One, 9(6), 99464.

    Article  Google Scholar 

  24. García, J. L., Uhía, I., & Galán, B. (2012). Catabolism and biotechnological applications of cholesterol degrading bacteria. Microbial Biotechnology, 5(6), 679–699.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31570079, 21276083).

Author information

Authors and Affiliations

Authors

Contributions

Xue-Dong Wang designed the experiments. Kuan Chen and Dan-Dan Cao performed the experiments. Xue-Dong Wang and Dong-Zhi Wei analyzed the experimental data and wrote the manuscript. All authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Xue-Dong Wang.

Ethics declarations

Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XD., Chen, K., Cao, DD. et al. The Inhibitory Effect of Cyclodextrin on Oxygen Bioavailability Is a Key Factor for the Metabolic Flux Redistribution Toward Steroid Alcohols in Phytosterol Resting Cells Bioconversion. Appl Biochem Biotechnol 193, 2443–2454 (2021). https://doi.org/10.1007/s12010-021-03540-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03540-w

Keywords