Production of 1,3-propanediol by Lactobacillus diolivorans from agro-industrial residues and cactus cladode acid hydrolyzate

Abstract

This study evaluated the bioproduction of 1,3-propanediol by Lactobacillus diolivorans in the medium based on agro-industrial residues and vegetal biomass substituting the MRS medium components. It was performed on a set of acid treatments and batch fermentations assays with crude glycerol (TCG) from biodiesel production, corn steep liquor (CSL), and cactus cladode hydrolyzate (CCH). Firstly, it was carried out on batch fermentation with different pure glycerol concentrations in MRS medium which was carried out, and the best condition achieved 4.66 g/L and 0.61 g/g of 1,3-PDO production and yield, respectively. Then, the TCG was evaluated, and a discrete increase of 1,3-PDO was observed. The replacement of the MRS medium nutrients by CLS was assessed, at different concentrations, for bacteria growth, and 5% of CLS reproduced the same biomass formation compared to the bacteria growth in MRS medium. It was also added cactus cladode hydrolyzate as the only sugar source, which showed a 1,3-PDO production close to the medium with pure glucose. Finally, a B-complex vitamin was added to the batch fermentation medium composed of TCG, CLS, and CCH, replacing all the costly MRS components. In this medium, the production of 1,3-propanediol was 6.57 g/L with a yield of 0.75 g/g. It means an increment of 29% and 19%, respectively, compared to MRS medium. Therefore, the combination of treated crude glycerol, corn steep liquor, and cactus cladode hydrolyzate has excellent potential for 1,3-PDO production by L. diolivorans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

References

  1. 1.

    Igari, S., Mori, S., & Takikawa, Y. (2000). Effects of molecular structure of aliphatic diols and polyalkylene glycol as lubricants on the wear of aluminum. Wear., 244(1-2), 180–184.

    CAS  Google Scholar 

  2. 2.

    Ferreira, F. G. (2018). Síntese e caracterização do poli (tereftalato de trimetileno) – PTT. Rev Eletrônica Estácio Recife, 4, 1–8.

    Google Scholar 

  3. 3.

    DuPont Tate & Lyle BioProducts. (2020) Our process. https://duponttateandlyle.com/our-process/. Accessed 27 October 2020

  4. 4.

    Grand View Research. (2015). 1,3 Propanediol market Size worth $776.3 million by 2022.https://www.grandviewresearch.com/press-release/global-1-3-propanediol-market. Accessed 27 October 2020

  5. 5.

    Powell, J.B., Slaugh, L.H., Forschner, T.C., Thomason, T.B., Semple, T.C., Weider, P.R., Arhancet, J.P. (1995) U.S. Patent No. 5,463,144. Washington, DC: U.S. Patent and Trademark Office.

  6. 6.

    Brossmer, C., Arntz, D. (2000) U.S. Patent No. 6,140,543. Washington, DC: U.S. Patent and Trademark Office.

  7. 7.

    DuPont and Genecor, Science. (2001). Genencor International and DuPont Expand R&D Collaboration to Make Key Biobased Polymer. http://www.genencor.cn/press_room/news_archive/news/2001/genencor_international_and_dupont_expand_rd_collaboration_to_make_key_biobased_polymer/. Accessed 11 January 2020

  8. 8.

    Yhaya, M. F., Tajarudin, H. A., & Ahmad, M. I. (2018). Renewable and sustainable materials from biological approach. In Renewable and sustainable materials in green technology (pp. 19–36). Cham: Springer.

    Google Scholar 

  9. 9.

    Yang, M., Yun, J., Zhang, H., Zhang, G., Zabed, H., & Qi, X. (2018). Bottlenecks and modification strategies of 1, 3-propanediol biosynthesis from glycerol. Chinese Journal of Biotechnology, 34(7), 1069–1080.

    PubMed  Google Scholar 

  10. 10.

    Leoneti, A. B., Aragão-Leoneti, V., & Oliveira, S. V. (2012). Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renewable Energy, 45, 138–145.

    CAS  Google Scholar 

  11. 11.

    Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnology Advances, 27(6), 895–913.

    CAS  PubMed  Google Scholar 

  12. 12.

    Liberato, V. S. (2017). Minimização do meio de cultivo para produção de 1,3-propanodiol a partir de glicerina bruta por Clostridium butyricum [Thesis]. Rio de Janeiro: Universidade Federal do Rio de Janeiro.

    Google Scholar 

  13. 13.

    Pflügl, S., Marx, H., Mattanovich, D., & Sauer, M. (2014). Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresource Technology, 152, 499–504.

    PubMed  Google Scholar 

  14. 14.

    Guo, Y., Dai, L., Xin, B., Tao, F., Tang, H., Shen, Y., Xu, P. (2017). 1,3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. Bioresource Technology 233, 406-412.

  15. 15.

    Yang, X., Kim, D. S., Choi, H. S., Kim, C. K., Thapa, L. P., Park, C., & Kim, S. W. (2017). Repeated batch production of 1,3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae. Chemical Engineering and Processing, 314, 660–669.

    CAS  Google Scholar 

  16. 16.

    Pflügl, S., Marx, H., Mattanovich, D., & Sauer, M. (2012). 1,3-propanediol production from glycerol with Lactobacillus diolivorans. Bioresource Technology, 119, 133–140.

    PubMed  Google Scholar 

  17. 17.

    Biebl, H., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology, 52(3), 289–297.

    CAS  PubMed  Google Scholar 

  18. 18.

    Doleyres, Y., Beck, P., Vollenweider, S., & Lacroix, C. (2005). Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Applied Microbiology and Biotechnology, 68(4), 467–474.

    CAS  PubMed  Google Scholar 

  19. 19.

    Chávez, J. D. (2008). Aproveitamento biotecnológico do glicerol derivado da produção de biodiesel para a obtenção de biomassa e ribonucleotídeos [Thesis]. São Paulo: Universidade de São Paulo.

    Google Scholar 

  20. 20.

    Liggett, R. W., & Koffler, H. (1948). Corn steep liquor in microbiology. Bacteriological Reviews, 12(4), 297–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Alencar, B. R., Dutra, E. D., Sampaio, E. V., Menezes, R. S., & Morais-Jr, M. A. (2018). Enzymatic hydrolysis of cactus pear varieties with high solids loading for bioethanol production. Bioresource Technology, 250, 273–280.

    CAS  PubMed  Google Scholar 

  22. 22.

    Jolly, J., Hitzmann, B., Ramalingam, S., & Ramachandran, K. B. (2014). Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. Journal of Bioscience and Bioengineering, 118(2), 188–194.

    CAS  PubMed  Google Scholar 

  23. 23.

    Vivek, N., Pandey, A., & Binod, P. (2016). Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresource Technology, 213, 222–230.

    CAS  PubMed  Google Scholar 

  24. 24.

    Sousa, M. H., Da Silva, A. S. F., Correia, R. C., Leite, N. P., Bueno, C. E. G., Pinheiro, R. L. S., De Santana, J. S., Da Silva, J. L., Sales, A. T., De Souza, C. C., Aquino, K. A. S., De Souza, R. B., Pinheiro, Henríquez, J. R., Schuler, A. R. P., Sampaio, E. V. S. B., Dutra, E. D., & Menezes, R. S. C. (2021). Valorization municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: an integrated biorefinery approach. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01252-5.

  25. 25.

    Lindlbauer, K. A., Marx, H., & Sauer, M. (2017). Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. New Biotechnology, 34, 32–39.

    CAS  PubMed  Google Scholar 

  26. 26.

    Chatzifragkou, A., Dietz, D., Komaitis, M., Zeng, A. P., & Papanikolaou, S. (2010). Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnology and Bioengineering, 107(1), 76–84.

    CAS  PubMed  Google Scholar 

  27. 27.

    Venkataramanan, K. P., Boatman, J., Kurniawan, Y., Taconi, K. A., Bothun, G. D., & Scholz, C. (2012). Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Applied Microbiology and Biotechnology, 93(3), 1325–1335.

    CAS  PubMed  Google Scholar 

  28. 28.

    Mu, Y., Teng, H., Zhang, D., Wang, W., & Xiu, Z. (2006). Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnology Letters, 28(21), 1755–1759.

    CAS  PubMed  Google Scholar 

  29. 29.

    Moon, C., Ahn, J. H., Kim, S. W., Sang, B. I., & Um, Y. (2010). Effect of biodiesel derived raw glycerol on 1,3-propanediol production by different microorganisms. Applied Biochemistry and Biotechnology, 161(1-8), 502–510.

    CAS  PubMed  Google Scholar 

  30. 30.

    Chatzifragkou, A., Papanikolaou, S., Dietz, D., Doulgeraki, A. I., Nychas, G. J., & Zeng, A. P. (2011). Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Applied Microbiology and Biotechnology, 91(1), 101–112.

    CAS  PubMed  Google Scholar 

  31. 31.

    Jun, S. A., Moon, C., Kang, C. H., Kong, S. W., Sang, B. I., & Um, Y. (2010). Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 161(1-8), 491–501.

    CAS  PubMed  Google Scholar 

  32. 32.

    Metsoviti, M., Zeng, A. P., Koutinas, A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 163(4), 408–418.

    CAS  PubMed  Google Scholar 

  33. 33.

    Orczyk, D., & Szymanowska-Powałowska, D. (2012). Isolation of bacteria of the genus Clostridium able to conversion of glycerol to 1,3- propanediol and optimization of medium. Engine Sci Technol, 2(5), 44–59.

    Google Scholar 

  34. 34.

    Wang, X., Zhou, J., Sun, Y., & Xiu, Z. (2019). Bioconversion of raw glycerol from waste cooking-oil-based biodiesel production to 1,3-propanediol and lactate by a microbial consortium. Frontiers in Bioengineering and Biotechnology, 7, 1–13.

    CAS  Google Scholar 

  35. 35.

    Khan, I., Nazir, K., Wang, Z. P., Liu, G. L., & Chi, Z. M. (2014). Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Applied Biochemistry and Biotechnology, 98(4), 1539–1546.

    CAS  Google Scholar 

  36. 36.

    Sharma, N., Prasad, G. S., & Choudhury, A. R. (2013). Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohydrate Polymers, 93(1), 95–101.

    CAS  PubMed  Google Scholar 

  37. 37.

    Wischral, D., Zhang, J., Cheng, C., Lin, M., Souza, L., Pessoa, F. L., Pereira-Jr, N., & Yang, S. (2016). Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: process optimization and metabolic engineering. Bioresource Technology, 212, 100–110.

    CAS  PubMed  Google Scholar 

  38. 38.

    Ju, J. H., Wang, D., Heo, S. Y., Kim, M. S., Seo, J. W., Kim, Y. M., Kim, D. H., Kang, S. A., Kim, C. H., & Oh, B. R. (2020). Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53. Microbial Cell Factories, 19(1), 1–10.

    Google Scholar 

  39. 39.

    Gutiérrez-Rivera, B., Waliszewski-Kubiak, K., Carvajal-Zarrabal, O., & Aguilar-Uscanga, M. G. (2012). Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. Journal of Chemical Technology and Biotechnology, 87(2), 263–270.

    Google Scholar 

  40. 40.

    Ishola, M., & Taherzadeh, M. J. (2014). Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresource Technology, 165, 9–12.

    CAS  PubMed  Google Scholar 

  41. 41.

    Silva, L. M., Fagundes, J. L., Viegas, P. A., Muniz, E. N., Rangel, J. H., Moreira, A. L., & Backes, A. (2014). Cactus pear forage production under different plant densities. Ciência Rural, 44(11), 2064–2071.

    Google Scholar 

  42. 42.

    Lindlbauer, K. A., Marx, H., & Sauer, M. (2017). 3-hydroxypropionaldehyde production from crude glycerol by Lactobacillus diolivorans with enhanced glycerol uptake. Biotechnology for Biofuels, 10(1), 1–11.

    Google Scholar 

  43. 43.

    Talarico, T. L., & Dobrogosz, W. J. (1990). Purification and characterization of glycerol dehydratase from Lactobacillus reuteri. Applied and Environmental Microbiology, 56(4), 1195–1197.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wang, X., Zhang, X., Guo, Y., Zhang, Z., Cao, Z., & Zhou, Y. (2009). Characterization of glycerol dehydratase expressed by fusing its α- and β-subunits. Biotechnology Letters, 31(5), 711–717.

    CAS  PubMed  Google Scholar 

  45. 45.

    Li, Z., Ro, S. M., Sekar, B. S., Seol, E., Lama, S., Lee, S. G., Wang, G., & Park, S. (2016). Improvement of 1,3-propanediol oxidoreductase (DhaT) stability against 3-hydroxypropionaldehyde by substitution of cysteine residues. Biotechnology and Bioprocess Engineering, 21(6), 695–703.

    CAS  Google Scholar 

  46. 46.

    Zheng, Z., Cheng, K., Hu, Q., Liu, H., Guo, N., & Liu, D. (2008). Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1,3-propanediol fermentation by Klebsiella pneumoniae. Biochemical Engineering Journal, 39(2), 305–310.

    CAS  Google Scholar 

  47. 47.

    Vieira, P. B., Kilikian, B. V., Bastos, R. V., Perpetuo, E. A., & Nascimento, C. A. (2015). Process strategies for enhanced production of 1,3-propanediol by Lactobacillus reuteri using glycerol as a co-substrate. Biochemical Engineering Journal, 94, 30–38.

    CAS  Google Scholar 

  48. 48.

    Papanikolaou, S., Ruiz-Sanchez, P., Pariset, B., Blanchard, F., & Fick, M. (2000). High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology, 77(2-3), 191–208.

    CAS  PubMed  Google Scholar 

  49. 49.

    Zhu, C., & Fang, B. (2013). Application of a two-stage temperature control strategy to enhance 1,3-propanediol productivity by Clostridium butyricum. J ChemTechnol Biotechnol, 88(5), 853–857.

    CAS  Google Scholar 

  50. 50.

    Xiu, Z. L., Chen, X., Sun, Y. Q., & Zhang, D. J. (2007). Stoichiometric analysis and experimental investigation of glycerol-glucose co-fermentation in Klebsiella pneumoniae under microaerobic conditions. Biochemical Engineering Journal, 33(1), 42–52.

    CAS  Google Scholar 

  51. 51.

    Wu, J., Wang, F., Wang, Z., Ye, H., & Liu, P. (2016). 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae. Chiang Mai Journal of Science, 43, 718–725.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the researcher Ma. Bárbara Ribeiro Alves Alencar, from the Federal University of Pernambuco, for supplying of cactus cladode hydrolyzates; Department of Nuclear Energy, from the Federal University of Pernambuco, for providing crude glycerol; Ingredion Brasil Ingr. Inds. Ltda., for supplying corn steep liquor and CAPES, for student scholarships.

Funding

This work was funded by CNPq through the Call MCTI/CNPq No. 19/2017 (Grant: 441305/2017-2) - Research and Development in Integrated and Sustainable Actions to Guarantee Water, Energy, and Food Security in the Caatinga and Cerrado Biomes.

Author information

Affiliations

Authors

Contributions

JSS: Conceptualization, Methodology, Validation, Research, Writing - Original draft. JLS: Validation, Research. IOP: Conceptualization, Methodology, Supervision, Writing—Review and Editing. RBS: Conceptualization, Methodology, Supervision, Writing—Review and Editing. EDD: Resources, Acquisition of financing. RSCM: Resources, Acquisition of financing.

Corresponding author

Correspondence to Rafael Barros de Souza.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Santana, J.S., da Silva, J.L., Dutra, E.D. et al. Production of 1,3-propanediol by Lactobacillus diolivorans from agro-industrial residues and cactus cladode acid hydrolyzate. Appl Biochem Biotechnol 193, 1585–1601 (2021). https://doi.org/10.1007/s12010-021-03513-z

Download citation

Keywords

  • Biorefinery
  • Bioconversion
  • Microorganism
  • Sustainability
  • Co-factor