Biochemical Properties of a Novel d-Mannose Isomerase from Pseudomonas syringae for d-Mannose Production


d-Mannose isomerase can reversibly catalyze d-fructose to d-mannose which has various beneficial effects. A novel d-mannose isomerase gene (PsMIaseA) from Pseudomonas syringae was cloned and expressed in Escherichia coli. The recombinant d-mannose isomerase (PsMIaseA) showed the highest amino acid sequence homogeneity of 50% with ManI from Thermobifda fusca. PsMIaseA was purified through Ni-NTA chromatography, and its specific activity was 818.6 U mg–1. The optimal pH and temperature of PsMIaseA were pH 7.5 and 45 °C, respectively. The enzyme was stable within a wide pH range from 5.0 to 10.0. It could efficiently convert d-fructose to d-mannose without any metal ions. When PsMIaseA was incubated with 600 g/L d-fructose for 6 h, the space-time yield of d-mannose reached 27.2 g L–1 h–1 with a maximum conversion ratio of 27%. Therefore, the d-mannose isomerase may be suitable for green production of d-mannose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Huang, J. W., Yu, L. N., Zhang, W. L., Zhang, T., Guang, C., & Mu, W. M. (2018). Production of D-mannose from D-glucose by co-expression of D-glucose isomerase and D-lyxose isomerase in Escherichia coli. Journal of the Science of Food and Agriculture, 98(13), 4895–4902.

    CAS  Article  Google Scholar 

  2. 2.

    Pohl, J. B., Baldwin, B. A., Dinh, B. L., Rahman, P., Smerek, D., Prado, F. J., Sherazee, N., & Atkinson, N. S. (2012). Ethanol preference in Drosophila melanogaster is driven by its caloric value. Alcoholism: Clinical & Experimental Research, 36(11), 1903–1912.

    CAS  Article  Google Scholar 

  3. 3.

    Ghlissi, Z., Kallel, R., Krichen, F., Hakim, A., Zeghal, K., Boudawara, T., Bougatef, A., & Sahnoun, Z. (2019). Polysaccharide from Pimpinella anisum seeds: structural characterization, anti-inflammatory and laser burn wound healing in mice. International Journal of Biological Macromolecules, 156, 1530–1538.

    Article  Google Scholar 

  4. 4.

    Kranjčec, B., Papeš, D., & Altarac, S. (2014). D-Mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World Journal of Urology, 32(1), 79–84.

    Article  Google Scholar 

  5. 5.

    Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16(10), 605–616.

    Article  Google Scholar 

  6. 6.

    Gonzalez, P. S., O’Prey, J., Cardaci, S., Barthet, V. J., Sakamaki, J. I., Beaumatin, F., Roseweir, A., Gay, D. M., Mackay, G., & Malviya, G. (2018). Mannose impairs tumour growth and enhances chemotherapy. Nature, 563(7733), 719–723.

    CAS  Article  Google Scholar 

  7. 7.

    Berge, A. C., & Wierup, M. (2012). Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal, 6(4), 557–564.

    CAS  Article  Google Scholar 

  8. 8.

    Chen, F. E., Zhao, J. F., Xiong, F. J., Xie, B., & Zhang, P. (2007). An improved synthesis of a key intermediate for (+)-biotin from D-mannose. Carbohydrate Research, 342(16), 2461–2464.

    CAS  Article  Google Scholar 

  9. 9.

    Saloranta, T., Peuronen, A., Dieterich, J. M., Ruokolainen, J., Lahtinen, M., & Leino, R. (2016). From mannose to small amphiphilic polyol: perfect linearity leads to spontaneous aggregation. Crystal Growth & Design, 16(2), 655–661.

    CAS  Article  Google Scholar 

  10. 10.

    Wei, Z. W., Huang, L. F., Cui, L., & Zhu, X. (2020). Mannose: good player and assister in pharmacotherapy. Biomedicine & Pharmacotherapy, 129, 110420.

    CAS  Article  Google Scholar 

  11. 11.

    Shintani, T. (2019). Food industrial production of monosaccharides using microbial, enzymatic, and chemical methods. Fermentation, 5(2), 47–59.

    CAS  Article  Google Scholar 

  12. 12.

    Monteiro, A. F., Miguez, I. S., Silva, J. P. R. B., & da Silva, A. S. (2019). High concentration and yield production of D-mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Scientific Reports, 9(1), 10939–10950.

    Article  Google Scholar 

  13. 13.

    Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368–374.

    CAS  Article  Google Scholar 

  14. 14.

    Hu, H., Liu, S. R., Zhang, W. Z., An, J. H., & Xia, H. A. (2020). Efficient epimerization of glucose to mannose over molybdenum-based catalyst in aqueous media. Chemistry Select, 5(5), 1728–1733.

    CAS  Google Scholar 

  15. 15.

    Hu, X., Shi, Y. N., Zhang, P., Miao, M., Zhang, T., & Jiang, B. (2016). D-Mannose: properties, production, and applications: an overview. Comprehensive Reviews in Food Science and Food Safety, 15(4), 773–785.

    Article  Google Scholar 

  16. 16.

    Wu, H., Zhang, W., & Mu, W. (2019). Recent studies on the biological production of D-mannose. Applied Microbiology and Biotechnology, 103(21-22), 8753–8761.

    CAS  Article  Google Scholar 

  17. 17.

    Park, C. S., Kim, J. E., Choi, J. G., & Oh, D. K. (2011). Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Applied Microbiology and Biotechnology, 92(6), 1187–1196.

    CAS  Article  Google Scholar 

  18. 18.

    Zhang, W. L., Huang, J. W., Jia, M., Guang, C., Zhang, T., & Mu, W. M. (2019). Characterization of a novel D-lyxose isomerase from Thermoflavimicrobium dichotomicum and its application for D-mannose production. Process Biochemistry, 83, 131–136.

    CAS  Article  Google Scholar 

  19. 19.

    Hirose, J., Kinoshita, Y., Fukuyama, S., Hayashi, S., Yokoi, H., & Takasaki, Y. (2003). Continuous isomerization of D-fructose to D-mannose by immobilized Agrobacterium radiobacter cells. Biotechnology Letters, 25(4), 349–352.

    CAS  Article  Google Scholar 

  20. 20.

    Palleroni, N. J., & Doudoroff, M. (1956). Mannose isomerase of Pseudomonas saccharophila. Journal of Biological Chemistry, 218(1), 535–548.

    CAS  Article  Google Scholar 

  21. 21.

    Saburi, W., Jaito, N., Kato, K., Tanaka, Y., Yao, M., & Mori, H. (2018). Biochemical and structural characterization of Marinomonas mediterranea D-mannose isomerase Marme_2490 phylogenetically distant from known enzymes. Biochimie, 114, 63–73.

    Article  Google Scholar 

  22. 22.

    Takasaki, Y., Takano, S., & Tanabe, O. (1964). Studies on the isomerization of sugars by bacteria. VIII. Purification and some properties of D-mannose isomerase from Xanthomonas rubrilineans S-48. Agricultural and Biological Chemistry, 28(9), 605–609.

    CAS  Article  Google Scholar 

  23. 23.

    Itoh, T., Mikami, B., Hashimoto, W., & Murata, K. (2008). Crystal Structure of YihS in Complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase. Journal of Molecular Biology, 377(5), 1443–1459.

    CAS  Article  Google Scholar 

  24. 24.

    Kasumi, T., Mori, S., Kaneko, S., Matsumoto, H., Kobayashi, Y., & Koyama, Y. (2014). Characterization of mannose isomerase from a cellulolytic actinobacteria Thermobifida fusca MBL10003. Journal of Applied Glycoscience, 61(1), 21–25.

    CAS  Article  Google Scholar 

  25. 25.

    Hu, X., Zhang, P., Miao, M., Zhang, T., & Jiang, B. (2016). Development of a recombinant D-mannose isomerase and its characterizations for D-mannose synthesis. International Journal of Biological Macromolecules, 89, 328–335.

    CAS  Article  Google Scholar 

  26. 26.

    Hey-Ferguson, A., & Elbein, A. D. (1970). Purification of a D-mannose isomerase from Mycobacterium smegmatis. Journal of Bacteriology, 101(3), 777–780.

    CAS  Article  Google Scholar 

  27. 27.

    Hirose, J., Maeda, K., Yokoi, H., & Takasaki, Y. (2001). Purification and characterization of mannose isomerase from Agrobacterium radiobacter M-1. Bioscience, Biotechnology, and Biochemistry, 65(3), 658–661.

    CAS  Article  Google Scholar 

  28. 28.

    Xin, X. F., Kvitko, B., & He, S. Y. (2018). Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 16(5), 316–328.

    CAS  Article  Google Scholar 

  29. 29.

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Article  Google Scholar 

  30. 30.

    Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature, 227(5258), 680–685.

    CAS  Article  Google Scholar 

  31. 31.

    Allenza, P., Morrell, M. J., & Detroy, R. W. (1990). Conversion of mannose to fructose by immobilized mannose isomerase from Pseudomonas cepacian. Applied Biochemistry and Biotechnology, 24, 171–182.

    Article  Google Scholar 

  32. 32.

    Mozhaev, V. V. (1993). Mechanism-based strategies for protein thermostabilization. Trends in Biotechnology, 11(3), 88–95.

    CAS  Article  Google Scholar 

  33. 33.

    Shen, S. C., & Wu, J. S. B. (2004). Maillard browning in ethanolic solution. Journal of Food Science, 69(4), 273–279.

    Article  Google Scholar 

  34. 34.

    Fujiwara, T., Saburi, W., Matsui, H., Mori, H., & Yao, M. (2014). Structural insights into the epimerization of β-1,4-linked oligosaccharides catalyzed by cellobiose 2-epimerase, the sole enzyme epimerizing non-anomeric hydroxyl groups of unmodified sugars. Journal of Biological Chemistry, 289(6), 3405–3415.

    CAS  Article  Google Scholar 

  35. 35.

    Geng, W., Jin, Y., Jameel, H., & Park, S. (2015). Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover. Bioresource Technology, 187, 43–48.

    CAS  Article  Google Scholar 

  36. 36.

    Wu, H., Chen, M., Guang, C. E., Zhang, W. L., & Mu, W. M. (2020). Characterization of a recombinant D-mannose-producing D-lyxose isomerase from Caldanaerobius polysaccharolyticus. Enzyme and Microbial Technology, 138, 109553.

    CAS  Article  Google Scholar 

  37. 37.

    Saburi, W., Sato, S., Hashiguchi, S., Muto, H., Iizuka, T., & Mori, H. (2019). Enzymatic characteristics of D-mannose 2-epimerase, a new member of the acylglucosamine 2-epimerase superfamily. Applied Microbiology and Biotechnology, 103(16), 6559–6570.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No. 31901627), and the key state research and development plan “Modern Food Processing and Food Storage and Transportation Technology and Equipment” (No. 2016YFD0400804).

Author information




Conceptualization, methodology, data curation, investigation, and writing—original draft preparation: Xiaohan Hua and Yanxiao Li. Conceptualization, methodology, and investigation: Junwen Ma. Conceptualization, supervision, and writing—review and editing: Zhengqiang Jiang. Supervision: Haijie Liu. Supervision and writing—review and editing: Qiaojuan Yan. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiaojuan Yan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOC 1663 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hua, X., Li, Y., Jiang, Z. et al. Biochemical Properties of a Novel d-Mannose Isomerase from Pseudomonas syringae for d-Mannose Production. Appl Biochem Biotechnol 193, 1482–1495 (2021).

Download citation


  • Mannose
  • Mannose isomerase
  • Characterization
  • Pseudomonas syringae
  • Mannose production