Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis


The thermal conversion of woody biomass is increasingly critical for the development of the energy processing technologies and fire safety engineering. The combustion characteristics, kinetics, and thermodynamics of pine wood were characterized through a thermogravimetric analyzer in the air atmosphere. There were two apparent peaks in the derivative TG curves for pine wood. The combustion process of pine wood was divided into two stages. Therein, the first stage occurring in the conversion degree range of 0–0.6 may be considered a one-step reaction. It was easier for pine wood to decompose under air than under nitrogen. Moreover, the first stage of pine wood combustion may be characterized by the diffusion model g(α) = [1 − (1 − α)1/3]2. The kinetic modeling showed a good agreement between the predicted and experimental conversion degree curves. In addition, the high comprehensive combustion index of pine wood at 10 K min-1 (6.73 × 10-7 %2 min-2 K-3) showed its great potential for bioenergy generation. Besides, both the value of ΔH and ΔS exhibited similar patterns with the activation energy value versus conversion degree, while the ΔG value almost remained at a positive constant with conversion degree. The average ΔH, ΔG, and ΔS value was nearly equal under different heating rates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Ding, Y., Ezekoye, O. A., Zhang, J., Wang, C., & Lu, S. (2018). The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel, 232, 147–153.

    CAS  Google Scholar 

  2. 2.

    Sundaram, V., Muthukumarappan, K., & Gent, S. (2017). Understanding the impacts of AFEX™ pretreatment and densification on the fast pyrolysis of corn stover, prairie cord grass, and switchgrass. Applied Biochemistry and Biotechnology, 181(3), 1060–1079.

    CAS  PubMed  Google Scholar 

  3. 3.

    Hu, J., Yan, Y., Evrendilek, F., Buyukada, M., & Liu, J. (2019). Combustion behaviors of three bamboo residues: Gas emission, kinetic, reaction mechanism and optimization patterns. Journal of Cleaner Production, 235(OCT.20), 549–561.

    CAS  Google Scholar 

  4. 4.

    Chen, H., Forbes, E. G. A., Archer, J., Priall, O. D., & Rooney, D. (2019). Production and characterization of granules from agricultural wastes and comparison of combustion and emission results with wood based fuels. Fuel, 256, 115897.

    CAS  Google Scholar 

  5. 5.

    Hassan, E. B. M., Steele, P. H., & Ingram, L. (2009). Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Applied Biochemistry and Biotechnology, 154(1-3), 3–13.

    Google Scholar 

  6. 6.

    Cardozo, E., & Malmquist, A. (2019). Performance comparison between the use of wood and sugarcane bagasse pellets in a Stirling engine micro-CHP system. Applied Thermal Engineering, 159, 113945.

    CAS  Google Scholar 

  7. 7.

    Wang, S., Wang, Q., Jiang, X., Xu, S., Ji, H., He, Z., et al. (2015). Combustion mathematical simulation of single seaweed particle in a bench-scale fluidized bed. Journal of Renewable and Sustainable Energy, 7(2), 6505–6513.

    Google Scholar 

  8. 8.

    Huang, H. J., & Ramaswamy, S. (2009). Modeling biomass gasification using thermodynamic equilibrium approach. Applied Biochemistry and Biotechnology, 154(1-3), 14–25.

    PubMed  Google Scholar 

  9. 9.

    Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.

    CAS  Google Scholar 

  10. 10.

    Werther, J., Saenger, M., & Hartge, E. U. (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science, 26(1), 1–27.

    CAS  Google Scholar 

  11. 11.

    Teixeira, P., Lopes, H., Gulyurtlu, I., Lapa, N., & Abelha, P. (2012). Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed. Biomass and Bioenergy, 39, 192–203.

    CAS  Google Scholar 

  12. 12.

    Posom, J., & Sirisomboon, P. (2017). Evaluation of lower heating value and elemental composition of bamboo using near infrared spectroscopy. Energy, 121, 147–158.

    CAS  Google Scholar 

  13. 13.

    Ahmad, M. S., Mehmood, M. A., Taqvi, S. T. H., Elkamel, A., Liu, C. G., Xu, J., et al. (2017). Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresource Technology, 245(Pt A), 491–501.

    CAS  PubMed  Google Scholar 

  14. 14.

    Roy, M. M., & Corscadden, K. W. (2012). An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Applied Energy, 99, 206–212.

    CAS  Google Scholar 

  15. 15.

    Ding, Y., Fukumoto, K., Ezekoye, O. A., Lu, S., Wang, C., & Li, C. (2020). Experimental and numerical simulation of multi-component combustion of typical charring material. Combustion and Flame, 211, 417–429.

    CAS  Google Scholar 

  16. 16.

    Ceranic, M., Kosanic, T., Djuranovic, D., Kaludjerovic, Z., Djuric, S., Gojkovic, P., & Bozickovic, R. (2016). Experimental investigation of corn cob pyrolysis. Journal of Renewable and Sustainable Energy, 8(6), 063102.

    Google Scholar 

  17. 17.

    Feng-Wen, Y., Deng-Xiang, J., Yong, N., Yao, L., Cheng-Jie, H., & Jian-Bing, J. (2012). Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts. Applied Biochemistry and Biotechnology, 168(1), 174–182.

    Google Scholar 

  18. 18.

    Quang-Vu, B., Khanh-Quang, T., & Øyvind, S. (2017). Combustion kinetics of wet-torrefied forest residues using the distributed activation energy model (DAEM). Applied Energy, 185, 1059–1066.

    Google Scholar 

  19. 19.

    Shah, I. A., Gou, X., Zhang, Q., Wu, J., Wang, E., & Liu, Y. (2018). Experimental study on NOx emission characteristics of oxy-biomass combustion. Journal of Cleaner Production, 199(PT.1-1130), 400–410.

    CAS  Google Scholar 

  20. 20.

    Müsellim, E., Hussain Tahir, M., Sajjad Ahmad, M., & Ceylan, S. (2018). Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Applied Thermal Engineering, 137, 54–61.

    Google Scholar 

  21. 21.

    Balasundram, V., Ibrahim, N., Kasmani, R. M., Hamid, M. K. A., Isha, R., Hasbullah, H., & Ali, R. R. (2017). Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. Journal of Cleaner Production, 167, 218–228.

    CAS  Google Scholar 

  22. 22.

    Chen, D., Shuang, E., & Liu, L. (2018). Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. Journal of Thermal Analysis and Calorimetry, 131(2), 1899–1909.

    CAS  Google Scholar 

  23. 23.

    Ghaly, A. E., & Ergudenler, A. (1991). Thermal degradation of cereal straws in air and nitrogen. Applied Biochemistry and Biotechnology, 28, 111–126.

    Google Scholar 

  24. 24.

    Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part C Polymer Letters, 4(5), 323–328.

    CAS  Google Scholar 

  25. 25.

    Takeo, O. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881–1886.

    Google Scholar 

  26. 26.

    Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69.

    CAS  Google Scholar 

  27. 27.

    Mishra, R. K., & Mohanty, K. (2017). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63–74.

    PubMed  Google Scholar 

  28. 28.

    Chen, Z., Hu, M., Zhu, X., Guo, D., Liu, S., Hu, Z., Xiao, B., Wang, J., & Laghari, M. (2015). Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology, 192, 441–450.

    CAS  PubMed  Google Scholar 

  29. 29.

    Gao, N., Li, A., Cui, Q., Lin, D., & Yue, D. (2013). TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis, 100(6), 26–32.

    CAS  Google Scholar 

  30. 30.

    Wagenaar, B. M., Prins, W., & Swaaij, W. P. M. V. (1993). Flash pyrolysis kinetics of pine wood. Fuel Processing Technology, 36(1-3), 291–298.

    CAS  Google Scholar 

  31. 31.

    Kim, S. S., Kim, J., Park, Y. H., & Park, Y. K. (2010). Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresource Technology, 101(24), 9797–9802.

    CAS  PubMed  Google Scholar 

  32. 32.

    Serrano, C., Portero, H., & Monedero, E. (2013). Pine chips combustion in a 50 kW domestic biomass boiler. Fuel, 111, 564–573.

    CAS  Google Scholar 

  33. 33.

    Nielsen, A. R., Larsen, M. B., Glarborg, P., & Dam-Johansen, K. (2012). Devolatilization and combustion of tire rubber and pine wood in a pilot scale rotary kiln. Energy and Fuels, 26(2), 854–868.

    CAS  Google Scholar 

  34. 34.

    Kuo-Chao, L., Wu, K. T., Chien-Song, C., & Wei-The, T. (2009). A new study on combustion behavior of pine sawdust characterized by the Weibull distribution. Chinese Journal of Chemical Engineering, 17(5), 860–868.

    Google Scholar 

  35. 35.

    Wang, G., Silva, R. B., Azevedo, J. L. T., Martins-Dias, S., & Costa, M. (2014). Evaluation of the combustion behaviour and ash characteristics of biomass waste derived fuels, pine and coal in a drop tube furnace. Fuel, 117, 809–824.

    CAS  Google Scholar 

  36. 36.

    Xu, X., Chen, R., Pan, R., & Zhang, D. (2020). Pyrolysis kinetics, thermodynamics, and volatiles of representative pine wood with thermogravimetry–Fourier transform infrared analysis. Energy and Fuels, 34(2), 1859–1869.

    CAS  Google Scholar 

  37. 37.

    Huang, J., Zhang, J., Liu, J., Xie, W., Kuo, J., Chang, K., Buyukada, M., Evrendilek, F., & Sun, S. (2019). Thermal conversion behaviors and products of spent mushroom substrate in CO2 and N2 atmospheres: kinetic, thermodynamic, TG and Py-GC/MS analyses. Journal of Analytical and Applied Pyrolysis, 139, 177–186.

    CAS  Google Scholar 

  38. 38.

    Wang, J., Lian, W., Li, P., Zhang, Z., Yang, J., Hao, X., et al. (2017). Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer. Fuel, 207(nov.1), 126–135.

    CAS  Google Scholar 

  39. 39.

    Cai, Z., Ma, X., Fang, S., Yu, Z., & Lin, Y. (2016). Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Applied Thermal Engineering, 106, 938–943.

    CAS  Google Scholar 

  40. 40.

    Maia, A. A., & de Morais, L. C. (2016). Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology, 204, 157–163.

    CAS  PubMed  Google Scholar 

  41. 41.

    Jiang, H., Wang, J., Wu, S., Wang, B., & Wang, Z. (2010). Pyrolysis kinetics of phenol–formaldehyde resin by non-isothermal thermogravimetry. Carbon, 48(2), 352–358.

    CAS  Google Scholar 

  42. 42.

    Vlaev, L., Nedelchev, N., Gyurova, K., & Zagorcheva, M. (2008). A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. Journal of Analytical and Applied Pyrolysis, 81(2), 253–262.

    CAS  Google Scholar 

  43. 43.

    Liqing, L., & Donghua, C. (2004). Application of iso-temperature method of multiple rate to kinetic analysis. Journal of Thermal Analysis and Calorimetry, 78(1), 283–293.

    CAS  Google Scholar 

  44. 44.

    Mortari, D. A., Torquato, L. D. M., Crespi, M. S., & Crnkovic, P. M. (2018). Co-firing of blends of sugarcane bagasse and coal. Journal of Thermal Analysis and Calorimetry, 132(2), 1333–1345.

    CAS  Google Scholar 

  45. 45.

    Lin, Y., Chen, Z., Dai, M., Fang, S., Liao, Y., Yu, Z., & Ma, X. (2018). Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM). Bioresource Technology, 259, 173–180.

    CAS  PubMed  Google Scholar 

  46. 46.

    Zhuo, Z., Liu, J., Sun, S., Sun, J., Kuo, J., Chang, K., Fu, J., & Wang, Y. (2017). Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres. Applied Thermal Engineering, 111, 87–94.

    CAS  Google Scholar 

  47. 47.

    Song, Y., Liu, J., Evrendilek, F., Kuo, J., & Buyukada, M. (2019). Combustion behaviors of Pteris vittata using thermogravimetric, kinetic, emission and optimization analyses. Journal of Cleaner Production, 237, 117772.

    CAS  Google Scholar 

  48. 48.

    Zou, H., Evrendilek, F., Liu, J., & Buyukada, M. (2019). Combustion behaviors of pileus and stipe parts of Lentinus edodes using thermogravimetric-mass spectrometry and Fourier transform infrared spectroscopy analyses: thermal conversion, kinetic, thermodynamic, gas emission and optimization analyses. Bioresource Technology, 288, 121481.

    CAS  PubMed  Google Scholar 

  49. 49.

    Liang, F., Wang, R., Hongzhong, X., Yang, X., Zhang, T., Hu, W., Mi, B., & Liu, Z. (2018). Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS. Bioresource Technology, 256, 53–60.

    CAS  PubMed  Google Scholar 

  50. 50.

    Chen, D., Zhou, J., & Zhang, Q. (2014). Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology, 169, 313–319.

    CAS  PubMed  Google Scholar 

  51. 51.

    Jiang, L., Zhang, D., Li, M., He, J.-J., Gao, Z.-H., Zhou, Y., & Sun, J. H. (2018). Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel, 222, 11–20.

    CAS  Google Scholar 

  52. 52.

    Chen, R., Lu, S., Zhang, Y., & Lo, S. (2017). Pyrolysis study of waste cable hose with thermogravimetry/Fourier transform infrared/mass spectrometry analysis. Energy Conversion and Management, 153, 83–92.

    CAS  Google Scholar 

  53. 53.

    Khawam, A., & Flanagan, D. R. (2006). Solid-state kinetic models: basics and mathematical fundamentals. The Journal of Physical Chemistry B, 110(35), 17315–17328.

    CAS  PubMed  Google Scholar 

  54. 54.

    Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1-2), 1–19.

    CAS  Google Scholar 

  55. 55.

    Niu, H., & Liu, N. (2015). Thermal decomposition of pine branch: unified kinetic model on pyrolytic reactions in pyrolysis and combustion. Fuel, 160(nov.15), 339–345.

    CAS  Google Scholar 

  56. 56.

    Ding, Y., Huang, B., Wu, C., He, Q., & Lu, K. (2019). Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis. Energy, 181, 11–17.

    CAS  Google Scholar 

  57. 57.

    Cai, H., Zou, H., Liu, J., Xie, W., Kuo, J., Buyukada, M., & Evrendilek, F. (2018). Thermal degradations and processes of waste tea and tea leaves via TG-FTIR: combustion performances, kinetics, thermodynamics, products and optimization. Bioresource Technology, 268, 715–725.

    CAS  PubMed  Google Scholar 

Download references


The authors would like to thank Huaping Bai for technical assistance.


This work was supported by the National Natural Science Foundation of China (no. 51806106) and the Science and Technology Department of Jiangsu Province, China (no: BK20170838).

Author information




All authors contributed to the study conception and design. All authors contributed to the manuscript. Xiaokang Xu wrote the first draft of the manuscript. Renming Pan and Ruiyu Chen contributed to the revisions and the final draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruiyu Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval


Consent to Participate


Consent to Publish


Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Pan, R. & Chen, R. Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis. Appl Biochem Biotechnol 193, 1427–1446 (2021).

Download citation


  • Combustion
  • Bioenergy
  • Woody biomass
  • Sustainable feedstock
  • Thermochemical conversion