Skip to main content

Advertisement

Log in

Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell—a Mini Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial fuel cell (MFC) is a promising technology that utilizes exoelectrogens cultivated in the form of biofilm to generate power from various types of sources supplied. A metal-reducing pathway is utilized by these organisms to transfer electrons obtained from the metabolism of substrate from anaerobic respiration extracellularly. A widely established model organism that is capable of extracellular electron transfer (EET) is Shewanella oneidensis. This review highlights the strategies used in the transformation of S. oneidensis and the recent development of MFC in terms of intervention through genetic modifications. S. oneidensis was genetically engineered for several aims including the study on the underlying mechanisms of EET, and the enhancement of power generation and wastewater treating potential when used in an MFC. Through engineering S. oneidensis, genes responsible for EET are identified and strategies on enhancing the EET efficiency are studied. Overexpressing genes related to EET to enhance biofilm formation, mediator biosynthesis, and respiration appears as one of the common approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: from fundamentals to applications. A review. Journal of Power Sources, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiao, Y., Qian, F., Li, Y., Wang, G., Saltikov, C. W., & Gralnick, J. A. (2011). Deciphering the electron transport pathway for graphene oxide reduction by Shewanella oneidensis MR-1. Journal of Bacteriology, 193(14), 3662–3665. https://doi.org/10.1128/JB.00201-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schuetz, B., Schicklberger, M., Kuermann, J., Spormann, A. M., & Gescher, J. (2009). Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 75(24), 7789–7796. https://doi.org/10.1128/AEM.01834-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coursolle, D., Baron, B. D., Bond, R. D., & Gralnick, A. J. (2009). The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of Bacteriology, 192(2), 467–474. https://doi.org/10.1128/JB.00925-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bretschger, O., Obraztsova, A., Sturm, C. A., Chang, I. S., Gorby, Y. A., Reed, S. B., Culley, D. E., Reardon, C. L., Barua, S., Romine, M. F., Zhou, J., Beliaev, A. S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B.-H., Fredrickson, J. K., & Nealson, K. H. (2007). Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Applied and Environmental Microbiology, 73(21), 7003–7012. https://doi.org/10.1128/AEM.01087-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lies, D. P., Hernandez, M. E., Kappler, A., Mielke, R. E., Gralnick, J. A., & Newman, D. K. (2005). Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Applied and Environmental Microbiology, 71(8), 4414–4426. https://doi.org/10.1128/AEM.71.8.4414-4426.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098–1101.

    Article  CAS  Google Scholar 

  8. Li, S.-W., Zeng, R. J., & Sheng, G.-P. (2017). An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells. Biochemical Engineering Journal, 118, 20–24.

    Article  CAS  Google Scholar 

  9. Wang, Y.-Z., Shen, Y., Gao, L., Liao, Z.-H., Sun, J.-Z., & Yong, Y.-C. (2017). Improving the extracellular electron transfer of Shewanella oneidensis MR-1 for enhanced bioelectricity production from biomass hydrolysate. RSC Advances, 7(48), 30488–30494.

    Article  CAS  Google Scholar 

  10. Sharma, S. C. D., Feng, C., Li, J., Hu, A., Wang, H., Qin, D., & Yu, C.-P. (2016). Electrochemical characterization of a novel exoelectrogenic bacterium strain SCS5, isolated from a mediator-less microbial fuel cell and phylogenetically related to Aeromonas jandaei. Microbes and Environments, 31(3), 213–225. https://doi.org/10.1264/jsme2.ME15185.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sacco, N. J., Bonetto, M. C., & Cortón, E. (2017). Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PLoS One, 12(2), e0169955–e0169955. https://doi.org/10.1371/journal.pone.0169955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toczyłowska-Mamińska, R., Szymona, K., Król, P., Gliniewicz, K., Pielech-Przybylska, K., Kloch, M., & Logan, B. E. (2018). Evolving microbial communities in cellulose-fed microbial fuel cell. Energies, 11(1), 1–12. https://doi.org/10.3390/en11010124.

    Article  CAS  Google Scholar 

  13. Ueoka, N., Kouzuma, A., & Watanabe, K. (2018). Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes. Bioelectrochemistry, 124, 1–6. https://doi.org/10.1016/j.bioelechem.2018.06.008.

    Article  CAS  PubMed  Google Scholar 

  14. Snider, R. M., Strycharz-Glaven, S. M., Tsoi, S. D., Erickson, J. S., & Tender, L. M. (2012). Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proceedings of the National Academy of Sciences, 109(38), 15467–15472. https://doi.org/10.1073/pnas.1209829109.

    Article  CAS  Google Scholar 

  15. Parameswaran, P., Bry, T., Popat, S. C., Lusk, B. G., Rittmann, B. E., & Torres, C. I. (2013). Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environmental Science & Technology, 47(9), 4934–4940. https://doi.org/10.1021/es400321c.

    Article  CAS  Google Scholar 

  16. Wrighton, K. C., Thrash, J. C., Melnyk, R. A., Bigi, J. P., Byrne-Bailey, K. G., Remis, J. P., Schichnes, D., Auer, M., Chang, C. J., & Coates, J. D. (2011). Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Applied and Environmental Microbiology, 77(21), 7633–7639. https://doi.org/10.1128/AEM.05365-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brutinel, E. D., & Gralnick, J. A. (2012). Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Applied Microbiology and Biotechnology, 93(1), 41–48. https://doi.org/10.1007/s00253-011-3653-0.

    Article  CAS  PubMed  Google Scholar 

  18. Kotloski, N. J., & Gralnick, J. A. (2013). Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio, 4. https://doi.org/10.1128/mBio.00553-12.

  19. Malvankar, N. S., & Lovley, D. R. (2012). Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem, 5(6), 1039–1046. https://doi.org/10.1002/cssc.201100733.

    Article  CAS  PubMed  Google Scholar 

  20. Orellana, R., Leavitt, J. J., Comolli, L. R., Csencsits, R., Janot, N., Flanagan, K. A., Gray, A. S., Leang, C., Izallalen, M., Mester, T., & Lovley, D. R. (2013). U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens. Applied and Environmental Microbiology, 79(20), 6369–6374. https://doi.org/10.1128/AEM.02551-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105(10), 3968–3973. https://doi.org/10.1073/pnas.0710525105.

    Article  CAS  Google Scholar 

  22. Dolch, K., Danzer, J., Kabbeck, T., Bierer, B., Erben, J., Förster, A. H., Maisch, J., Nick, P., Kerzenmacher, S., & Gescher, J. (2014). Characterization of microbial current production as a function of microbe–electrode-interaction. Bioresource Technology, 157, 284–292. https://doi.org/10.1016/j.biortech.2014.01.112.

    Article  CAS  PubMed  Google Scholar 

  23. Kipf, E., Koch, J., Geiger, B., Erben, J., Richter, K., Gescher, J., Zengerle, R., & Kerzenmacher, S. (2013). Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresource Technology, 146, 386–392. https://doi.org/10.1016/j.biortech.2013.07.076.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenbaum, M., Cotta, M. A., & Angenent, L. T. (2010). Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnology and Bioengineering, 105, 880–888. https://doi.org/10.1002/bit.22621.

    Article  CAS  PubMed  Google Scholar 

  25. Thormann, K. M., Saville, R. M., Shukla, S., & Spormann, A. M. (2005). Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. Journal of Bacteriology, 187(3), 1014–1021. https://doi.org/10.1128/JB.187.3.1014-1021.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saville, R. M., Dieckmann, N., & Spormann, A. M. (2010). Spatiotemporal activity of the mshA gene system in Shewanella oneidensis MR-1 biofilms. FEMS Microbiology Letters, 308(1), 76–83. https://doi.org/10.1111/j.1574-6968.2010.01995.x.

    Article  CAS  PubMed  Google Scholar 

  27. Thormann, K. M., Saville, R. M., Shukla, S., Pelletier, D. A., & Spormann, A. M. (2004). Initial phases of biofilm formation in Shewanella oneidensis MR-1. Journal of Bacteriology, 186(23), 8096–8104. https://doi.org/10.1128/JB.186.23.8096-8104.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, J., Romine, M. F., & Ward, M. J. (2007). Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species. FEMS Microbiology Letters, 273(2), 180–186. https://doi.org/10.1111/j.1574-6968.2007.00810.x.

    Article  CAS  PubMed  Google Scholar 

  29. Tai, S.-K., Wu, G., Yuan, S., & Li, K.-C. (2010). Genome-wide expression links the electron transfer pathway of Shewanella oneidensis to chemotaxis. BMC Genomics, 11(1), 319. https://doi.org/10.1186/1471-2164-11-319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Vriendt, K., Theunissen, S., Carpentier, W., De Smet, L., Devreese, B., & Van Beeumen, J. (2005). Proteomics of Shewanella oneidensis MR-1 biofilm reveals differentially expressed proteins, including AggA and RibB. Proteomics, 5(5), 1308–1316. https://doi.org/10.1002/pmic.200400989.

    Article  CAS  PubMed  Google Scholar 

  31. Myers, C. R., & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240(4857), 1319–1321. https://doi.org/10.1126/science.240.4857.1319.

    Article  CAS  PubMed  Google Scholar 

  32. Lovley, D. R. (2012). Electromicrobiology. Annual Review of Microbiology, 66(1), 391–409. https://doi.org/10.1146/annurev-micro-092611-150104.

    Article  CAS  PubMed  Google Scholar 

  33. Myers, J. M., & Myers, C. R. (2000). Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. Journal of Bacteriology, 182(1), 67–75. https://doi.org/10.1128/JB.182.1.67-75.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Myers, C. R., & Myers, J. M. (2002). MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Applied and Environmental Microbiology, 68(11), 5585–5594. https://doi.org/10.1128/AEM.68.11.5585-5594.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sturm, G., Richter, K., Doetsch, A., Heide, H., Louro, R. O., & Gescher, J. (2015). A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. The ISME Journal, 9(8), 1802–1811.

    Article  Google Scholar 

  36. Beliaev, A. S., Saffarini, D. A., McLaughlin, J. L., & Hunnicutt, D. (2001). MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Molecular Microbiology, 39(3), 722–730. https://doi.org/10.1046/j.1365-2958.2001.02257.x.

    Article  CAS  PubMed  Google Scholar 

  37. Coursolle, D., & Gralnick, J. A. (2010). Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Molecular Microbiology, 77, 995–1008. https://doi.org/10.1111/j.1365-2958.2010.07266.x.

    Article  CAS  PubMed  Google Scholar 

  38. Firer-Sherwood, M. A., Bewley, K. D., Mock, J.-Y., & Elliott, S. J. (2011). Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c. Metallomics, 3(4), 344–348. https://doi.org/10.1039/C0MT00097C.

    Article  CAS  PubMed  Google Scholar 

  39. Marritt, S. J., Lowe, T. G., Bye, J., McMillan, D. G. G., Shi, L., Fredrickson, J., Zachara, J., Richardson, D. J., Cheesman, M. R., Jeuken, L. J. C., & Butt, J. N. (2012). A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochemical Journal, 444(3), 465–474. https://doi.org/10.1042/BJ20120197.

    Article  CAS  Google Scholar 

  40. McMillan, D. G. G., Marritt, S. J., Butt, J. N., & Jeuken, L. J. C. (2012). Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA. Journal of Biological Chemistry, 287(17), 14215–14225. https://doi.org/10.1074/jbc.M112.348813.

    Article  CAS  Google Scholar 

  41. McMillan, D. G. G., Marritt, S. J., Firer-Sherwood, M. A., Shi, L., Richardson, D. J., Evans, S. D., Elliott, S. J., Butt, J. N., & Jeuken, L. J. C. (2013). Protein–protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. Journal of the American Chemical Society, 135(28), 10550–10556. https://doi.org/10.1021/ja405072z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leys, D., Meyer, T. E., Tsapin, A. S., Nealson, K. H., Cusanovich, M. A., & Van Beeumen, J. J. (2002). Crystal structures at atomic resolution reveal the novel concept of “electron-harvesting” as a role for the small tetraheme cytochrome c. Journal of Biological Chemistry, 277(38), 35703–35711. https://doi.org/10.1074/jbc.M203866200.

    Article  CAS  Google Scholar 

  43. Hartshorne, R. S., Reardon, C. L., Ross, D., Nuester, J., Clarke, T. A., Gates, A. J., Mills, P. C., Fredrickson, J. K., Zachara, J. M., Shi, L., Beliaev, A. S., Marshall, M. J., Tien, M., Brantley, S., Butt, J. N., & Richardson, D. J. (2009). Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences, 106(52), 22169–22174. https://doi.org/10.1073/pnas.0900086106.

    Article  Google Scholar 

  44. Ross, D. E., Ruebush, S. S., Brantley, S. L., Hartshorne, R. S., Clarke, T. A., Richardson, D. J., & Tien, M. (2007). Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 73(18), 5797–5808. https://doi.org/10.1128/AEM.00146-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. White, G. F., Shi, Z., Shi, L., Wang, Z., Dohnalkova, A. C., Marshall, M. J., Fredrickson, J. K., Zachara, J. M., Butt, J. N., Richardson, D. J., & Clarke, T. A. (2013). Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proceedings of the National Academy of Sciences, 110(16), 6346–6351. https://doi.org/10.1073/pnas.1220074110.

    Article  Google Scholar 

  46. Richardson, D. J., Butt, J. N., Fredrickson, J. K., Zachara, J. M., Shi, L., Edwards, M. J., White, G., Baiden, N., Gates, A. J., Marritt, S. J., & Clarke, T. A. (2012). The ‘porin–cytochrome’ model for microbe-to-mineral electron transfer. Molecular Microbiology, 85(2), 201–212. https://doi.org/10.1111/j.1365-2958.2012.08088.x.

    Article  CAS  PubMed  Google Scholar 

  47. Min, D., Cheng, L., Zhang, F., Huang, X. N., Li, D. B., Liu, D. F., Lau, T. C., Mu, Y., & Yu, H. Q. (2017). Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environmental Science and Technology, 51(9), 5082–5089. https://doi.org/10.1021/acs.est.6b04640.

    Article  CAS  PubMed  Google Scholar 

  48. Okamoto, A., Kalathil, S., Deng, X., Hashimoto, K., Nakamura, R., & Nealson, K. H. (2014). Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Scientific Reports, 4, 5628.

    Article  CAS  Google Scholar 

  49. Kumar, R., Singh, L., & Zularisam, A. W. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322–1336. https://doi.org/10.1016/j.rser.2015.12.029.

    Article  CAS  Google Scholar 

  50. Cao, Y., Li, X., Li, F., & Song, H. (2017). CRISPRi-sRNA: transcriptional-translational regulation of extracellular electron transfer in Shewanella oneidensis. ACS Synthetic Biology, 6(9), 1679–1690. https://doi.org/10.1021/acssynbio.6b00374.

    Article  CAS  PubMed  Google Scholar 

  51. Cao, Y., Song, M., Li, F., Li, C., Lin, X., & Song, H. (2019). A synthetic plasmid toolkit for Shewanella oneidensis MR-1. Frontiers in Microbiology, 10, 410.

    Article  Google Scholar 

  52. Lin, T., Bai, X., Hu, Y., Li, B., Yuan, Y. J., Song, H., Yang, Y., & Wang, J. (2017). Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell. AICHE Journal, 63(6), 1830–1838. https://doi.org/10.1002/aic.15611.

    Article  CAS  Google Scholar 

  53. Vellingiri, A., Song, Y. E., Munussami, G., Kim, C., Park, C., Jeon, B. H., Lee, S. G., & Kim, J. R. (2019). Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. Journal of Chemical Technology & Biotechnology, 94(7), 2115–2122.

    Article  CAS  Google Scholar 

  54. Yang, Y., Ding, Y., Hu, Y., Cao, B., Rice, S. A., Kjelleberg, S., & Song, H. (2015). Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synthetic Biology, 4(7), 815–823. https://doi.org/10.1021/sb500331x.

    Article  CAS  PubMed  Google Scholar 

  55. Li, F., Yin, C., Sun, L., Li, Y., Guo, X., & Song, H. (2018). Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnology Journal, 13(5), 1700491.

    Article  Google Scholar 

  56. Li, F., Li, Y., Sun, L., Chen, X., An, X., Yin, C., Cao, Y., Wu, H., & Song, H. (2018). Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1. ACS Synthetic Biology, 7(3), 885–895. https://doi.org/10.1021/acssynbio.7b00390.

    Article  CAS  PubMed  Google Scholar 

  57. Li, F., Li, Y.-X., Cao, Y.-X., Wang, L., Liu, C.-G., Shi, L., & Song, H. (2018). Modular engineering to increase intracellular NAD (H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nature Communications, 9(1), 3637.

    Article  Google Scholar 

  58. Li, F., Li, Y., Sun, L., Li, X., Yin, C., An, X., Chen, X., Tian, Y., & Song, H. (2017). Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnology for Biofuels, 10(1), 1–10. https://doi.org/10.1186/s13068-017-0881-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, C., Song, Y. E., Lee, C. R., Jeon, B.-H., & Kim, J. R. (2016). Glycerol-fed microbial fuel cell with a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonae J2B. Journal of Industrial Microbiology & Biotechnology, 43(10), 1397–1403.

    Article  CAS  Google Scholar 

  60. Uno, M., Phansroy, N., Aso, Y., & Ohara, H. (2017). Starch-fueled microbial fuel cells by two-step and parallel fermentation using Shewanella oneidensis MR-1 and Streptococcus bovis 148. Journal of Bioscience and Bioengineering, 124(2), 189–194.

    Article  CAS  Google Scholar 

  61. West, E. A., Jain, A., & Gralnick, J. A. (2017). Engineering a native inducible expression system in Shewanella oneidensis to control extracellular electron transfer. ACS Synthetic Biology, 6(9), 1627–1634. https://doi.org/10.1021/acssynbio.6b00349.

    Article  CAS  PubMed  Google Scholar 

  62. Ng, I.-S., Guo, Y., Zhou, Y., Wu, J.-W., Tan, S.-I., & Yi, Y.-C. (2018). Turn on the Mtr pathway genes under pLacI promoter in Shewanella oneidensis MR-1. Bioresources and Bioprocessing, 5(1), 35. https://doi.org/10.1186/s40643-018-0221-9.

    Article  Google Scholar 

  63. Sawitzke, J. A., Thomason, L. C., Costantino, N., Bubunenko, M., Datta, S., & Court, D. L. (2007). Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods in Enzymology, 421. https://doi.org/10.1016/S0076-6879(06)21015-2.

  64. Corts, A. D., Thomason, L. C., Gill, R. T., & Gralnick, J. A. (2019). A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-37025-4.

    Article  CAS  Google Scholar 

  65. Abremski, K., & Hoess, R. (1984). Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. The Journal of Biological Chemistry, 259(3), 1509–1514.

    Article  CAS  Google Scholar 

  66. Enyeart, P. J., Chirieleison, S. M., Dao, M. N., Perutka, J., Quandt, E. M., Yao, J., Whitt, J. T., Keatinge-Clay, A. T., Lambowitz, A. M., & Ellington, A. D. (2013). Generalized bacterial genome editing using mobile group II introns and Cre-lox. Molecular Systems Biology, 9(1), 1–16. https://doi.org/10.1038/msb.2013.41.

    Article  CAS  Google Scholar 

  67. Costa JR, Bejcek BE, McGee JE, Fogel AI, Brimacombe KR, Ketteler R (2004) Genome editing using engineered nucleases and their use in genomic screening. Assay Guidance Manual 1–24.

  68. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315, 1709–1712. https://doi.org/10.1126/science.1138140.

    Article  CAS  Google Scholar 

  69. Li, J., Tang, Q., Li, Y., Fan, Y.-Y., Li, F.-H., Wu, J.-H., Min, D., Li, W.-W., Lam, P. K., & Yu, H.-Q. (2020). Rediverting electron flux with an engineered CRISPR-ddAsCpf1 system to enhance the pollutant degradation capacity of Shewanella oneidensis. Environmental Science & Technology, 54(6), 3599–3608.

    Article  CAS  Google Scholar 

  70. Liu, T., Yu, Y. Y., Deng, X. P., Ng, C. K., Cao, B., Wang, J. Y., Rice, S. A., Kjelleberg, S., & Song, H. (2015). Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnology and Bioengineering, 112(10), 2051–2059.

    Article  CAS  Google Scholar 

  71. Ding, Y., Peng, N., Du, Y., Ji, L., & Cao, B. (2014). Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Applied and Environmental Microbiology, 80(4), 1498–1506. https://doi.org/10.1128/AEM.03461-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng, Z. H., Xiong, J. R., Min, D., Cheng, L., Liu, D. F., Li, W. W., Jin, F., Yang, M., & Yu, H. Q. (2020). Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnology and Bioengineering 117(5), 1294–1303. https://doi.org/10.1002/bit.27305.

  73. Oram, J., & Jeuken, L. J. (2019). Tactic response of Shewanella oneidensis MR-1 toward insoluble electron acceptors. MBio, 10(1), e02490–e02418.

    Article  CAS  Google Scholar 

  74. Madsen CS, TerAvest MA (2019) NADH dehydrogenases contribute to extracellular electron transfer by Shewanella oneidensis MR-1 in bioelectrochemical systems. bioRxiv:657668.

  75. Hirose, A., Kasai, T., Aoki, M., Umemura, T., Watanabe, K., & Kouzuma, A. (2018). Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03416-4.

    Article  CAS  Google Scholar 

  76. Pinchuk, G. E., Hill, E. A., Geydebrekht, O. V., De Ingeniis, J., Zhang, X., Osterman, A., Scott, J. H., Reed, S. B., Romine, M. F., & Konopka, A. E. (2010). Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Computational Biology, 6(6), e1000822.

    Article  Google Scholar 

  77. Ong, W. K., Vu, T. T., Lovendahl, K. N., Llull, J. M., Serres, M. H., Romine, M. F., & Reed, J. L. (2014). Comparisons of Shewanella strains based on genome annotations, modeling, and experiments. BMC Systems Biology, 8(1), 31.

    Article  Google Scholar 

  78. Gaffney, E., Grattieri, M., Rhodes, Z., & Minteer, S. D. (2020). Review—exploration of computational approaches for understanding microbial electrochemical systems: opportunities and future directions. Journal of the Electrochemical Society, 167(6). https://doi.org/10.1149/1945-7111/ab872e.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing—original draft preparation: Dexter Hoi Long Leung; supervision: Yin Sze Lim; data analysis: Kasimayan Uma; resources: Ja-Hon Lin and Guan-Ting Pan; writing—review and editing: Siewhui Chong; funding acquisition: Thomas Chung-Kuang Yang.

Corresponding authors

Correspondence to Siewhui Chong or Thomas Chung-Kuang Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, D.H.L., Lim, Y.S., Uma, K. et al. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell—a Mini Review. Appl Biochem Biotechnol 193, 1170–1186 (2021). https://doi.org/10.1007/s12010-020-03469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03469-6

Keywords

Navigation