Skip to main content

Advertisement

Log in

A Biotechnological Strategy for Molybdenum Extraction Using Acidithiobacillus ferrooxidans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosorption is a potential tool for the extraction of metals from contaminated water and recovery of precious metals, which is a convenient alternative to conventional processes. In the present study, molybdenum recovery by Acidithiobacillus ferrooxidans strain ZT-94 was evaluated. Additionally, the effects of pH initial concentration of molybdenum, contact time, adsorbent concentration, and temperature on the biosorption were investigated. As revealed by the results, the greatest amount of molybdenum sorption was achieved at pH 5. By increasing the concentration of molybdenum from 2 to 45 mg/l, the molybdenum removal increases from 71.13 to 150 mg/g dry weight of biomass, but biosorption efficiency decreased. Also, increasing the dry weight of biomass from 0.008 to 0.06 g/l degreased the biosorption efficiency from 20.68 to 85.69%. The results of molybdenum biosorption were evaluated by Langmuir and Freundlich adsorption isotherm. The maximum biosorption capacity for molybdenum extraction was 150.497 mg/g and amount which is very suitable for a biosorbent. The biosorption was examined by scanning electron microscopy-energy-dispersive X-ray spectroscopy. Because of the elevated biosorption properties of molybdenum by this biosorbent, it can be concluded that Acidithiobacillus ferrooxidans strain ZT-94 is a promising candidate for the removal and recovery of molybdenum from aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Velea, I., Voicu, A., & Lazar, I. (1995). Biosorption of some metallic ions from industrial effluents using fungal strains and bacterial exopolysaccharides. Biohydrometallurgical Processing. Chile: University of Chile.

    Google Scholar 

  2. Jayawant MD (1983) Removal of heavy metal ions. Google Patents.

    Google Scholar 

  3. Fenglian, W. Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407–418.

    Google Scholar 

  4. Mudhoo, A., Garg, V. K., & Wang, S. (2012). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10(2), 109–117.

    CAS  Google Scholar 

  5. Chopra, A., & Pathak, C. (2010). Biosorption technology for removal of metallic pollutants—an overview. Journal of Applied and Natural Science, 2(2), 318–329.

    Google Scholar 

  6. Gil, R. A., Pasini-Cabello, S., Takara, A., Smichowski, P., Olsina, R. A., & Martínez, L. D. (2007). A novel on-line preconcentration method for trace molybdenum determination by USN–ICP OES with biosorption on immobilized yeasts. Microchemical Journal, 86(2), 156–160.

    CAS  Google Scholar 

  7. Namasivayam, C., & Sangeetha, D. (2006). Removal of molybdate from water by adsorption onto ZnCl 2 activated coir pith carbon. Bioresource Technology, 97(10), 1194–1200.

    CAS  PubMed  Google Scholar 

  8. Namasivayam, C., & Sureshkumar, M. V. (2009). Removal and recovery of molybdenum from aqueous solutions by adsorption onto surfactant-modified coir pith, a lignocellulosic polymer. CLEAN–Soil, Air, Water, 37(1), 60–66.

    CAS  Google Scholar 

  9. Schneider, I., & Rubio, J. (1995). New trends in biosorption of heavy metals by freshwater macrophytes. Biohydrometallurgical processing, 247–256.

  10. Volesky, B., & Holan, Z. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250.

    CAS  PubMed  Google Scholar 

  11. Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals–an overview. Journal of Biotechnology, 7, 159–169.

    CAS  Google Scholar 

  12. Vijayaraghavan, K., & Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291.

    CAS  PubMed  Google Scholar 

  13. Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends in Biotechnology, 16(7), 291–300.

    CAS  Google Scholar 

  14. Vieira, R. H., & Volesky, B. (2010). Biosorption: a solution to pollution? International Microbiology, 3(1), 17–24.

    Google Scholar 

  15. Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219–232.

    CAS  Google Scholar 

  16. Yıldız, S., Çekim, M., & Dere, T. (2017). Biosorption of Cu2+ and Ni2+ ions from synthetic waters. Applied Biochemistry and Biotechnology, 183(1), 332–347. https://doi.org/10.1007/s12010-017-2448-x.

    Article  CAS  PubMed  Google Scholar 

  17. Kafshgari, F., Keshtkar, A. R., & Mousavian, M. A. (2013). Study of Mo (VI) removal from aqueous solution: application of different mathematical models to continuous biosorption data. Iranian journal of environmental health science & engineering, 10(1), 14.

    Google Scholar 

  18. Ahalya, N., Ramachandra, T., & Kanamadi, R. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71–79.

    CAS  Google Scholar 

  19. Chojnacka, K. (2010). Biosorption and bioaccumulation–the prospects for practical applications. Environment International, 36(3), 299–307.

    CAS  PubMed  Google Scholar 

  20. Kotrba, P. (2011). Microbial biosorption of metals—general introduction. In Microbial biosorption of metals (pp. 1–6). Berlin: Springer.

    Google Scholar 

  21. Kasra-Kermanshahi, R., Bahrami-Bavani, M., & Tajer-Mohammad-Ghazvini, P. (2019). Microbial clean-up of uranium in the presence of molybdenum using pretreated Acidithiobacillus ferrooxidans. Journal of Radioanalytical and Nuclear Chemistry, 322(2), 1139–1149. https://doi.org/10.1007/s10967-019-06819-9.

    Article  CAS  Google Scholar 

  22. Wong, M. F., Chua, H., Lo, W., Leung, C. K., & Peter, H. (2001). Removal and recovery of copper (II) ions by bacterial biosorption. Applied Biochemistry and Biotechnology, 91(1–9), 447–457.

    PubMed  Google Scholar 

  23. Brierley, C. L. (1990). Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiology Journal, 8(3–4), 201–223.

    CAS  Google Scholar 

  24. Li, X., Ding, C., Liao, J., Lan, T., Li, F., Zhang, D., Yang, J., Yang, Y., Luo, S., & Tang, J. (2014). Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. Journal of Environmental Radioactivity, 135, 6–12.

    CAS  PubMed  Google Scholar 

  25. Atlas, R. M. (2005). Handbook of media for environmental microbiology (Vol. 1). Boca Raton: CRC press.

    Google Scholar 

  26. Davis, T., Volesky, B., & Vieira, R. (2000). Sargassum seaweed as biosorbent for heavy metals. Water Research, 34(17), 4270–4278.

    CAS  Google Scholar 

  27. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.

    CAS  Google Scholar 

  28. Tajer-Mohammad-Ghazvini, P., Kasra-Kermanshahi, R., Nozad-Golikand, A., Sadeghizadeh, M., Ghorbanzadeh-Mashkani, S., & Dabbagh, R. (2016). Cobalt separation by alphaproteobacterium MTB-KTN90: magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering, 39(12), 1899–1911.

    CAS  PubMed  Google Scholar 

  29. Hassan, S. H., Awad, Y. M., Kabir, M. H., Oh, S. E., & Joo, J. (2010). Bacterial biosorption of heavy metals. Research Gate, 79–110.

  30. Volesky, B. (2003). Sorption and biosorption (Vol. 4). Montreal: BV Sorbex Inc.

    Google Scholar 

  31. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    CAS  Google Scholar 

  32. Liu, Y., & Liu, Y.-J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61(3), 229–242.

    CAS  Google Scholar 

  33. Volesky, B. (2007). Biosorption and me. Water Research, 41(18), 4017–4029.

    CAS  PubMed  Google Scholar 

  34. Guibal, E., Milot, C., & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Industrial & Engineering Chemistry Research, 37(4), 1454–1463.

    Google Scholar 

  35. Wang, M.-Y., Jiang, C.-J., Wang, X.-W., Xian, P.-F., Wang, H.-G., & Yang, Y. (2017). Existing form of Mo (VI) in acidic sulfate solution. Rare Metals, 36(7), 612–616.

    CAS  Google Scholar 

  36. Lou, Z., Wang, J., Jin, X., Wan, L., Wang, Y., Chen, H., Shan, W., & Xiong, Y. (2015). Brown algae based new sorption material for fractional recovery of molybdenum and rhenium from wastewater. Chemical Engineering Journal, 273, 231–239.

    CAS  Google Scholar 

  37. Lee, M.-S., Sohn, S.-H., & Lee, M.-H. (2011). Ionic equilibria and ion exchange of molybdenum (VI) from strong acid solution. Bulletin of the Korean Chemical Society, 32(10), 3687–3691.

    CAS  Google Scholar 

  38. Goyal, N., Jain, S., & Banerjee, U. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7(2), 311–319.

    CAS  Google Scholar 

  39. Akhtar, K., Akhtar, M. W., & Khalid, A. M. (2007). Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Research, 41(6), 1366–1378.

    CAS  PubMed  Google Scholar 

  40. Malekzadeh, F., Mashkani, S. G., Ghafourian, H., & Soudi, M. R. (2007). Biosorption of tungstate by a Bacillus sp. isolated from Anzali lagoon. World Journal of Microbiology and Biotechnology, 23(7), 905–910.

    Google Scholar 

  41. Pons, M. P., & Fuste, M. C. (1993). Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Applied Microbiology and Biotechnology, 39(4), 661–665.

    CAS  Google Scholar 

  42. Korenevskii, A., & Karavaiko, G. (1993). Molybdenum sorption by microbial biomass. Microbiology, 62(4), 428–431.

    Google Scholar 

  43. Wang, J.-s., Hu, X.-j., Wang, J., Bao, Z.-l., Xie, S.-b., & Yang, J.-h. (2010). The tolerance of Rhizopus arrihizus to U (VI) and biosorption behavior of U (VI) onto R. arrihizus. Biochemical Engineering Journal, 51(1), 19–23.

    Google Scholar 

  44. Saji, V. S., & Lee, C. W. (2012). Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem, 5(7), 1146–1161.

    CAS  PubMed  Google Scholar 

  45. Joo, S.-H., Kim, Y.-U., Kang, J.-G., Yoon, H.-S., Kim, D.-S., & Shin, S. M. (2012). Recovery of molybdenum and rhenium using selective precipitation method from molybdenite roasting dust in alkali leaching solution. Materials Transactions, 53(11), 2038–2042.

    CAS  Google Scholar 

  46. Tsuruta, T. (2007). Removal and recovery of uranium using microorganisms isolated from North American uranium deposits. American Journal of Environmental Sciences, 3(2), 60–66.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Tajer-Mohammad-Ghazvini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasra-Kermanshahi, R., Tajer-Mohammad-Ghazvini, P. & Bahrami-Bavani, M. A Biotechnological Strategy for Molybdenum Extraction Using Acidithiobacillus ferrooxidans. Appl Biochem Biotechnol 193, 884–895 (2021). https://doi.org/10.1007/s12010-020-03468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03468-7

Keywords

Navigation